
IBM Cognos Software Development Kit
Version 11.0.0

Dynamic Cubes Developer Guide

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
83.

Product Information

This document applies to IBM Cognos Software Development Kit Version 11.0.0 and may also apply to subsequent
releases.

Licensed Materials - Property of IBM
© Copyright International Business Machines Corporation 2013, 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Introduction.. vii

Chapter 1. What's new?... 1
New features in version 10.2.2..1

Support for in-memory aggregates..1
Support for calculated members and measures... 1
Support for slices..2
Support for relative time members..2
Support for named sets..2
Support for parameter maps..3
Support for virtual measure folders...3
Support for new expression types... 3

New features in version 10.2.1 interim fix 3... 3
Support for virtual cubes..4

Chapter 2. Overview of the Cognos Dynamic Cubes API.. 5
Cognos Dynamic Cubes HTTP request structure.. 5
Cognos Dynamic Cubes HTTP response structure... 6
Cognos Dynamic Cubes sample programs..7
Command overview... 7

Chapter 3. Sample Cognos Dynamic Cubes model creation..................................... 9
Creating a model.. 9
Creating a data source for the model.. 9
Creating a relational dimension...10
Creating a level for the relational dimension.. 10
Creating a second level for the relational dimension... 12
Creating a relational hierarchy for the model... 14
Creating physical tables and joins...15
Creating mappings for the level attributes..17
Creating a cube for the model... 19
Creating a measure dimension for the cube... 19
Creating a measure..20
Creating a relationship between the relational dimension and the measure dimension........................21
Saving the model to the local file system..22
Publishing, registering, and starting the cube.. 22

Chapter 4. Virtual cube modeling using the Cognos Dynamic Cubes API................ 25
Creating a virtual cube...25
Creating a virtual measure dimension.. 26
Creating a virtual measure...27
Creating a virtual dimension..29
Creating a virtual hierarchy..30
Creating a virtual level... 31

Chapter 5. Aggregate modeling using the Cognos Dynamic Cubes API................... 33
Creating an aggregate..33
Creating an aggregate measure...33
Creating an aggregate dimension..34
Creating an aggregate hierarchy..34
Creating an aggregate level... 35

 iii

Chapter 6. Performing additional tasks using the Cognos Dynamic Cubes API....... 37
Filter data using an aggregate slicer... 37
Create calculated members and measures.. 38
Use relative time functionality...38
Create named sets...40
Create parameter maps...41

Chapter 7. Cognos Dynamic Cubes command reference.. 43
Control commands...43

authenticate... 43
cube_deploy... 43
cube_register..44
cube_start...44
model_close... 44
model_new...44
model_open..45
model_open_stream.. 45
model_save.. 45
model_save_as...46
model_save_stream... 46
search... 46

Model commands.. 46
aggregate..48
aggregate_dimension... 48
aggregate_hierarchy...48
aggregate_level.. 49
aggregate_measure..49
calculated_member... 49
cube.. 50
datasource..51
folder...53
level...53
measure..54
measure_dimension... 56
measure_folder.. 57
model..57
named_set..58
named_set_folder.. 59
namespace... 60
parameter_map.. 61
physical_association.. 61
physical_join.. 62
physical_table.. 62
query_item..63
query_item_mapping... 64
query_item_role... 65
relational_dimension..65
relational_filter... 66
relational_hierarchy... 67
relational_parameter_map.. 69
relational_query_subject..69
relationship...70
relative_time_member...71
security_filter..72
security_view.. 73
sql_object... 74

iv

virtual_cube..74
virtual_dimension...75
virtual_hierarchy.. 76
virtual_level.. 77
virtual_measure... 77
virtual_measure_dimension.. 78
virtual_measure_folder..79
virtual_source...80

Localized text... 81
Expressions.. 82

Notices..83
Index.. 87

 v

vi

Introduction

This document is intended for use with IBM® Cognos® Dynamic Cubes. It describes the API available to
create applications that model dimensional metadata and create dynamic cubes for use as data sources
in the Content Manager.

Audience

To use the IBM Cognos Dynamic Cubes Developer Guide effectively, you must be familiar with the following
items:

• Cognos Dynamic Cubes, IBM Cognos Cube Designer, and the IBM Cognos Dynamic Cubes User Guide.
• The representational state transfer (REST) web services architecture.
• A programming language that has libraries for making HTTP requests.

Finding information

To find product documentation on the web, including all translated documentation, access IBM
Knowledge Center (http://www.ibm.com/support/knowledgecenter).

Forward-looking statements

This documentation describes the current functionality of the product. References to items that are not
currently available may be included. No implication of any future availability should be inferred. Any such
references are not a commitment, promise, or legal obligation to deliver any material, code, or
functionality. The development, release, and timing of features or functionality remain at the sole
discretion of IBM.

Samples disclaimer

The Sample Outdoors Company, Great Outdoors Company, GO Sales, any variation of the Sample
Outdoors or Great Outdoors names, and Planning Sample depict fictitious business operations with
sample data used to develop sample applications for IBM and IBM customers. These fictitious records
include sample data for sales transactions, product distribution, finance, and human resources. Any
resemblance to actual names, addresses, contact numbers, or transaction values is coincidental. Other
sample files may contain fictional data manually or machine generated, factual data compiled from
academic or public sources, or data used with permission of the copyright holder, for use as sample data
to develop sample applications. Product names referenced may be the trademarks of their respective
owners. Unauthorized duplication is prohibited.

Accessibility features

Consult the documentation for the tools that you use to develop applications to determine their
accessibility level. These tools are not a part of this product.

IBM Cognos HTML documentation has accessibility features. PDF documents are supplemental and, as
such, include no added accessibility features.

© Copyright IBM Corp. 2013, 2018 vii

http://www.ibm.com/support/knowledgecenter
http://www.ibm.com/support/knowledgecenter

viii IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Chapter 1. What's new?
This topic contains a list of new features for this release of the IBM Cognos Dynamic Cubes API. It helps
you plan your upgrade and application deployment strategies and the training requirements for your
users.

New features in version 10.2.2
New features have been added to the IBM Cognos Dynamic Cubes API and are described here.

Support for in-memory aggregates
This release of the Dynamic Cubes API adds support for in-memory aggregates.

The following commands have been added to support modeling in-memory aggregates.

• aggregate
• aggregate_dimension
• aggregate_hierarchy
• aggregate_level
• aggregate_measure

The following command has been updated to support modeling in-memory aggregates: cube

The following properties were added:

• inDatabaseAggregates
• inMemoryAggregates

You can see usage examples for aggregate modeling in Chapter 5, “Aggregate modeling using the Cognos
Dynamic Cubes API,” on page 33.

Support for calculated members and measures
This release of the Dynamic Cubes API adds support for calculated members and measures.

The following command has been added to support modeling calculated members and measures:
calculated_member

The following commands have been updated to support modeling calculated members and measures:

• measure_dimension

– The defaultMeasure property can be a calculated measure.
– Added the calculatedMeasures property.

• measure_folder

– Added the calculatedMeasures property.
• relational_hierarchy

– Added the calculatedMembers property.
• virtual_hierarchy

– Added the calculatedMembers property.
• virtual_measure_dimension

– The defaultVirtualMeasure property can be a calculated measure.
– Added the calculatedMeasures property.

© Copyright IBM Corp. 2013, 2018 1

You can see usage examples for creating calculated members and measures in “Create calculated
members and measures” on page 38.

Support for slices
This release of the Dynamic Cubes API adds support for slices.

The following command has been updated to support modeling slices: cube

• Added the slices property.

You can see usage examples for modeling slices in “Filter data using an aggregate slicer” on page 37.

Support for relative time members
This release of the Dynamic Cubes API adds support for relative time members.

The following command has been added to support modeling relative time members:
relative_time_member

The following commands have been updated to support modeling relative time members:

• relational_hierarchy

– The levelType property can take the following additional values:

- time_holidays
- time_quarters
- time_seasons
- time_semesters
- time_trimesters

• virtual_hierarchy

– Added the calculatedMembers property.
• virtual_measure_dimension

– Added the following properties:

- generateNextPeriodsMembers
- generatePriorPeriodsMembers
- includeRelativeTimeSubtree
- relativeTimeMembers

You can see usage examples for modeling relative time members in “Use relative time functionality” on
page 38.

Support for named sets
This release of the Dynamic Cubes API adds support for named sets.

The following commands have been added to support modeling named sets:

• named_set
• named_set_folder

The following commands have been updated to support modeling named sets:

• cube

– The following properties were added:

- namedSetFolders
- namedSets

• virtual_cube

2 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

– The following properties were added:

- namedSetFolders
- namedSets

You can see usage examples for modeling named sets in “Create named sets” on page 40.

Support for parameter maps
This release of the Dynamic Cubes API adds support for parameter maps.

The following commands have been added to support modeling parameter maps:

• parameter_map
• realtional_parameter_map

The following commands have been updated to support modeling parameter maps:

• model

– Added the parameterMaps property.
• query_item

– The parent object can be a relational parameter map.
• relational_filter

– The parent object can be a relational parameter map.

You can see usage examples for modeling parameter maps in “Create parameter maps” on page 41.

Support for virtual measure folders
This release of the Dynamic Cubes API adds support for virtual measure folders.

The following command has been added to support modeling virtual measure folders:
virtual_measure_folder

The following commands have been updated to support virtual measure folders:

• virtual_measure

– The parent object can be a virtual measure folder.
• virtual_measure_dimension

– Added the folders property.

Support for new expression types
This release of the Dynamic Cubes API adds support for new expression types.

The following expression types are now available:

• A member unique name.
• An id property of a model object.

For more information, see “Expressions” on page 82.

New features in version 10.2.1 interim fix 3
New features have been added to the IBM Cognos Dynamic Cubes API and are described here. These
features have also been rolled up into version 10.2.1 fix pack 3.

What's new? 3

Support for virtual cubes
This release of the Dynamic Cubes API adds support for virtual cubes.

The following commands have been added to support modeling virtual cubes:

• virtual_cube
• virtual_dimension
• virtual_hierarchy
• virtual_level
• virtual_measure
• virtual_measure_dimension
• virtual_source

You can see usage examples for virtual cube modeling in Chapter 4, “Virtual cube modeling using the
Cognos Dynamic Cubes API,” on page 25.

4 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Chapter 2. Overview of the Cognos Dynamic Cubes
API

The IBM Cognos Dynamic Cubes API automates the functions available in the IBM Cognos Cube Designer.
The API uses the representational state transfer (REST) web services architecture.

Use the Cognos Dynamic Cubes API to send HTTP requests to the IBM Cognos Analytics server to work
with dynamic cubes, including creation, modification, deployment, and startup. The HTTP response from
the server contains data about any actions that are run, along with any error or warning messages that are
generated by the request. Data sent to and retrieved from the server is in the JavaScript Object Notation
(JSON) format.

Chapter 3, “Sample Cognos Dynamic Cubes model creation,” on page 9 describes the steps in the
creation of a simple model using the StartToFinish.java sample program as an example. The
commands that are used and the input and output JSON objects are described. This topic shows you how
the results of operations are used to do subsequent operations.

Chapter 7, “Cognos Dynamic Cubes command reference,” on page 43 documents the commands
available in the Cognos Dynamic Cubes API.

Cognos Dynamic Cubes HTTP request structure
The IBM Cognos Dynamic Cubes HTTP request can be generated by the web libraries available with most
programming languages. The parts of the HTTP request are described here.

HTTP method

The IBM Cognos Dynamic Cubes API HTTP request uses the 4 common HTTP methods:

GET
Used to retrieve the properties of an object.

POST
Used to create an object or execute a command.

PUT
Used to update the properties of an object.

DELETE
Used to delete an object.

Important: Only GET or POST can be specified as the HTTP method. To use PUT or DELETE, specify POST
as the method and use the X-HTTP-Method-Override request header with a value of PUT or DELETE.

HTTP path

The HTTP path is based on the dispatcher URL of the Cognos Analytics server and has one of the two
forms:

• <dispatcher_url>/FmCommand/<command>
• <dispatcher_url>/FmCommand/<command>/<object_id>

where

• <dispatcher_url> is the External dispatcher URI of the Cognos Analytics server as specified in IBM
Cognos Connection.

• <command> is the Cognos Dynamic Cubes command.
• <object_id> is an object id that is required for some commands.

© Copyright IBM Corp. 2013, 2018 5

Request headers

Some commands require that you include request headers. If you are sending data in the entity-body, you
must include a Content-Type: application/json header. Other headers are required on occasion
and they are mentioned as appropriate.

Entity-body

Many commands require that you submit data in the entity-body. This data is packaged as a JSON object.
The data that is required is described in the documentation for the individual commands. You should
consider the following when creating the JSON object:

• The names in the name-value pairs are case-sensitive.
• The name-value pairs can be entered in any order.
• Localized text and expressions have special structures. See the linked topics for details.

Cognos Dynamic Cubes HTTP response structure
The IBM Cognos Dynamic Cubes HTTP response is described here.

Response code

The response code from a Cognos Dynamic Cubes request is always 200 or 201. A different response
code may be returned if the request path is malformed or the Cognos Dynamic Cubes API is not available.
All information, including errors or warnings, is included in the entity-body of the response.

Response headers

The response headers contain the standard information about the server, cookies, and so on. There is also
a Content-Type: application/json;charset=utf-8 header.

Entity-body

The entity-body consists of a JSON object that contains the response to a request, including any error or
warning messages.

If the request is to create an object, then the response consists of an identifier that can be used to refer to
the object in subsequent requests, such as requests that create child objects or updating the properties of
the object. A sample response is shown here.

{
 "id": "a36907c1f796426a96b6749d0651c0cd"
}

Important: These identifiers do not persist and should be assumed only to be valid for the period after a
model is created or opened, and before the model is closed.

A request to retrieve the properties of a data source returns a JSON object such as the following.

{
 "schema": "gosales",
 "queryProcessing": "databaseOnly",
 "queryType": "relational",
 "functionSetId": "V_SQLServer",
 "catalog": "GOSALES",
 "rollupProcessing": "unspecified",
 "name": "great_outdoors_sales",
 "cmDataSource": "great_outdoors_sales",
 "cube": "",

6 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

 "interface": "SS"
}

The data that is returned is described in the documentation for the individual commands.

A request returns an empty JSON object if the command ran and no response is needed.

If errors are encountered when you attempt to run a request, the response contains an array that is called
errors that contains any error messages, such as the following.

{
 "errors": [
 "Unable to find model object for ID: 62613913c45e47be80de79340effde9"
]
}

If there any warnings that are generated by the request, they are contained in a warnings array.

Cognos Dynamic Cubes sample programs
There are two sample programs, which are written in the Java™ programming language, that you can use
to explore the IBM Cognos Dynamic Cubes API.

The sample programs are in the <installation_location>\sdk\fmdsdk\java folder. The sample
programs are described here:

StartToFinish.java
This sample program creates a simple model that is based on the great_outdoors_sales sample
data source, and creates, deploys, registers, and starts a cube that is based on the model.

PseudoTranslate.java
This sample program demonstrates model modifications. It finds an English name of a cube and
creates a pseudo-translated name by adding lead-in and lead-out characters.

This sample program requires two command line arguments, which are the file paths and names of
the input and output model files. The file paths are relative to the location of the sample program.

To use the sample programs, you must

• Ensure the IBM Cognos Analytics server supports anonymous access.
• Replace the string BI_SERVER_URL in each Java program with the External dispatcher URI of the

server.
• Add <installation_location>\webapps\p2pd\WEB-INF\lib\JSON4J.jar to the class path,

along with the standard Java libraries.

Command overview
Each command in the IBM Cognos Dynamic Cubes API performs a specific action, such as create a
relational dimension, or update the properties of a measure. Creating a model involves running a series of
linked commands that create the model, along with its child objects, such as dimensions and measures.

Objects in Cognos Dynamic Cubes have parent-child relationships with other objects. To create two
objects with a parent-child relationship, do the following steps.

1. Create the parent object. The output JSON object contains an identifier for the object, as shown here.

{
 "id": "1f95121f943b44ff8eabb25c392ab7b1"
}

Overview of the Cognos Dynamic Cubes API 7

2. Create the child object. In the input JSON object, include a parent name-value pair with this
identifier, along with any other required properties as shown here.

{
 "parent": "1f95121f943b44ff8eabb25c392ab7b1",
 other properties...
}

If you get the properties of a parent object, the properties include arrays of child items so you can
determine, from the properties of the parent object, which child objects it has. These properties are read-
only. You create a parent-child relationship when you create the child object as previously demonstrated.

8 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Chapter 3. Sample Cognos Dynamic Cubes model
creation

The StartToFinish.java sample program is an example of creating a simple model, and then
creating, deploying, registering, and starting a cube, using the IBM Cognos Dynamic Cubes API.

Each step in the model creation process is briefly explained, and the input and output JSON objects are
displayed. The identifiers that are created by the Cognos Dynamic Cubes API are shown as variables (such
as <modelId>) since the values differ every time the sample program is run. Unless otherwise specified,
the HTTP POST method is used for the Cognos Dynamic Cubes API calls described in this sample
program.

Creating a model
The first step when you are creating a model is to create a model object. Then, the child objects of the
model are also created and the relationships between the components are defined.

Creating a model - Project

The model_new command creates a new model called Project. The identifier that is contained in the
response is used in subsequent commands to refer to the model.

Input JSON data

{
 "name": "Project"
 "locale": "en",
 "namespace": "Model",
}

Output JSON data

{
 "id": "<modelId>"
}

Creating a data source for the model
A data source is created that is used by the model. This data source is based on the GO Sales sample
database.

Creating a data source - great_outdoors_sales

The datasource command creates a data source for the model. The identifier that is contained in the
response is used in subsequent commands to refer to the data source.

Input JSON data

{
 "parent": "<modelId>",
 "schema": "gosales",
 "queryType": "relational",
 "functionSetId": "V_SQLServer",
 "interface": "SS",

© Copyright IBM Corp. 2013, 2018 9

 "catalog": "GOSALES",
 "name": "great_outdoors_sales",
 "cmDataSource": "great_outdoors_sales"
}

Output JSON data

{
 "id": "<idDataSource>"
}

Creating a relational dimension
A relational dimension is created for the model.

Creating a relational dimension - Products

The relational_dimension command creates a relational dimension for the model called Products.
The identifier contained in the response is used in subsequent commands to refer to the relational
dimension.

Input JSON data

{
 "parent": "<modelId>",
 "name": [
 {
 "locale": "en",
 "text": "Products"
 }
]
}

Output JSON data

{
 "id": "<idDimension>"
}

Creating a level for the relational dimension
A level called Line is created for the relational dimension. In addition, attributes Product Line Code
and Product Line En are created for the level.

Creating a level - Line

The level command creates a level called Line. The identifier contained in the response is used in
subsequent commands to refer to the level.

Input JSON data

{
 "parent": "<idDimension>",
 "name": [
 {

10 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

 "locale": "en",
 "text": "Line"
 }
]
}

Output JSON data

{
 "id": "<idLevel>"
}

Creating an attribute - Product Line Code

The query_item command creates an attribute called Product Line Code for the Line level. The
identifier contained in the response is used in subsequent commands to refer to the attribute.

Input JSON data

{
 "parent": "<idLevel>",
 "usage": "identifier",
 "datatype": "int32",
 "isLevelKey": "true",
 "scale": "0",
 "parent": "<idLevel>",
 "name": [
 {
 "locale": "en",
 "text": "Product Line Code"
 }
],
 "precision": "10"
}

Output JSON data

{
 "id": "<idProductLineCode>"
}

Creating an attribute - Product Line En

The query_item command creates an attribute called Product Line En for the Line level. The
identifier contained in the response is used in subsequent commands to refer to the attribute.

Input JSON data

{
 "parent": "<idLevel>",
 "size": "30",
 "usage": "identifier",
 "datatype": "nVarChar",
 "name": [
 {
 "locale": "en",
 "text": "Product Line En"
 }
]

Sample Cognos Dynamic Cubes model creation 11

}

Output JSON data

{
 "id": "<idProductLine>"
}

Creating the member caption role for Product Line En

The query_item_role command creates the member caption role for the Product Line En attribute.

Input JSON data

{
 "parent": "<idProductLine>",
 "name": [
 {
 "locale": "en",
 "text": "_memberCaption"
 }
]
}

Output JSON data

{
 "id": "<query_item_role>"
}

Creating a second level for the relational dimension
A second level called Line is created for the relational dimension. In addition, attributes Product Type
Code and Product Type En are created for the level.

Creating a level - Type

The level command creates a level called Type. The identifier contained in the response is used in
subsequent commands to refer to the level.

Input JSON data

{
 "parent": "<idDimension>",
 "name": [
 {
 "locale": "en",
 "text": "Type"
 }
]
}

Output JSON data

{
 "id": "<idTypeLevel>"

12 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

}

Creating an attribute - Product Type Code

The query_item command creates an attribute called Product Type Code for the Type level. The
identifier contained in the response is used in subsequent commands to refer to the attribute.

Input JSON data

{
 "parent": "<idTypeLevel>",
 "usage": "identifier",
 "datatype": "int32",
 "isLevelKey": "true",
 "scale": "0",
 "name": [
 {
 "locale": "en",
 "text": "Product Type Code"
 }
],
 "precision": "10"
}

Output JSON data

{
 "id": "<idProductTypeCode>"
}

Creating an attribute - Product Type En

The query_item command creates an attribute called Product Type En for the Type level. The
identifier contained in the response is used in subsequent commands to refer to the attribute.

Input JSON data

{
 "parent": "<idTypeLevel>",
 "size": "40",
 "usage": "identifier",
 "datatype": "nVarChar",
 "name": [
 {
 "locale": "en",
 "text": "Product Type En"
 }
]
}

Output JSON data

{
 "id": "<idProductType>"
}

Sample Cognos Dynamic Cubes model creation 13

Creating the member caption role for Product Type En

The query_item_role command creates the member caption role for the Product Type En attribute.

Input JSON data

{
 "parent": "<idProductType>",
 "name": [
 {
 "locale": "en",
 "text": "_memberCaption"
 }
]
}

Output JSON data

{
 "id": "<query_item_role>"
}

Creating a relational hierarchy for the model
A relational hierarchy is added to the model.

Creating a relational hierarchy

The relational_hierarchy command creates a relational hierarchy that contains the Line and Type
levels.

Input JSON data

{
 "parent": "<idDimension>",
 "defaultHierarchy": "true",
 "rootCaption": "All",
 "isParentChild": "false",
 "multiRoot": "false",
 "name": [
 {
 "locale": "en",
 "text": "ByType"
 }
],
 "rootMember": "All",
 "levels": ["<idLevel>",
 "<idTypeLevel>"]
}

Output JSON data

{
 "id": "<relational_hierarchy>"
}

14 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Creating physical tables and joins
Three physical tables, PRODUCT_LINE, PRODUCT_TYPE, and PRODUCT are created. In addition, joins are
established between the PRODUCT_TYPE and PRODUCT_LINE tables, and between the PRODUCT_TYPE
and PRODUCT tables.

Creating a physical table - PRODUCT_LINE

The physical_table command creates a physical table called PRODUCT_LINE. The identifier contained
in the response is used in subsequent commands to refer to the physical table.

Input JSON data

{
 "parent": "<idDimension>",
 "datasource": "<idDataSource>",
 "name": "PRODUCT_LINE"
}

Output JSON data

{
 "id": "<idTableLine>"
}

Creating a physical table - PRODUCT_TYPE

The physical_table command creates a physical table called PRODUCT_TYPE. The identifier contained
in the response is used in subsequent commands to refer to the physical table.

Input JSON data

{
 "parent": "<idDimension>",
 "datasource": "<idDataSource>",
 "name": "PRODUCT_TYPE"
}

Output JSON data

{
 "id": "<idTableType>"
}

Creating a physical table - PRODUCT

The physical_table command creates a physical table called PRODUCT. The identifier contained in the
response is used in subsequent commands to refer to the physical table.

Input JSON data

{
 "parent": "<idDimension>",
 "datasource": "<idDataSource>",
 "name": "PRODUCT"

Sample Cognos Dynamic Cubes model creation 15

}

Output JSON data

{
 "id": "<idTableProduct>"
}

Creating a physical join - PRODUCT_TYPE to PRODUCT_LINE

The physical_join command creates a physical join between the PRODUCT_TYPE and PRODUCT_LINE
tables. The identifier contained in the response is used in subsequent commands to refer to the physical
join.

Input JSON data

{
 "parent": "<idDimension>",
 "leftMaxCardinality": "one",
 "rightTable": "<idTableType>",
 "leftMinCardinality": "one",
 "rightMaxCardinality": "many",
 "leftTable": "<idTableLine>",
 "rightMinCardinality": "one",
 "name": "FK_PRODUCT_TYPE_PRODUCT_LINE"
}

Output JSON data

{
 "id": "<idJoin>"
}

The physical_association command creates a physical association.

Input JSON data

{
 "parent": "<idJoin>",
 "rightColumn": "PRODUCT_LINE_CODE",
 "operator": "equals",
 "leftColumn": "PRODUCT_LINE_CODE"
}

Output JSON data

{
 "id": "<physical_association>"
}

Creating a physical join - PRODUCT_TYPE to PRODUCT

The physical_join command creates a physical join between the PRODUCT_TYPE and PRODUCT
tables. The identifier contained in the response is used in subsequent commands to refer to the physical
join.

16 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Input JSON data

{
 "parent": "<idDimension>",
 "leftMaxCardinality": "one",
 "rightTable": "<idTableProduct>",
 "leftMinCardinality": "one",
 "rightMaxCardinality": "many",
 "leftTable": "<idTableType>",
 "rightMinCardinality": "one",
 "name": "FK_PRODUCT_PRODUCT_TYPE"
}

Output JSON data

{
 "id": "<idJoinProduct>"
}

The physical_association command creates a physical association.

Input JSON data

{
 "parent": "<idJoinProduct>",
 "rightColumn": "PRODUCT_TYPE_CODE",
 "operator": "equals",
 "leftColumn": "PRODUCT_TYPE_CODE"
}

Output JSON data

{
 "id": "<physical_association_2>"
}

Creating mappings for the level attributes
Mappings are created for the four level attributes: Product Line Code, Product Line En, Product
Type Code, and Product Type En.

Creating a query item mapping - PRODUCT_LINE_CODE

The query_item_mapping command creates a query item mapping.

Input JSON data

{
 "parent": "<idDimension>",
 "columnName": "PRODUCT_LINE_CODE",
 "queryItem": "<idProductLineCode>",
 "table": "<idTableLine>"
}

Sample Cognos Dynamic Cubes model creation 17

Output JSON data

{
 "id": "<query_item_mapping_1>"
}

Creating a query item mapping - PRODUCT_LINE_EN

The query_item_mapping command creates a query item mapping.

Input JSON data

{
 "parent": "<idDimension>",
 "columnName": "PRODUCT_LINE_EN",
 "queryItem": "<idProductLine>",
 "table": "<idTableLine>"
}

Output JSON data

{
 "id": "<query_item_mapping_2>"
}

Creating a query item mapping - PRODUCT_TYPE_CODE

The query_item_mapping command creates a query item mapping.

Input JSON data

{
 "parent": "<idDimension>",
 "columnName": "PRODUCT_TYPE_CODE",
 "queryItem": "<idProductTypeCode>",
 "table": "<idTableType>"
}

Output JSON data

{
 "id": "<query_item_mapping_3>"
}

Creating a query item mapping - PRODUCT_TYPE_EN

The query_item_mapping command creates a query item mapping.

Input JSON data

{
 "parent": "<idDimension>",
 "columnName": "PRODUCT_TYPE_EN",
 "queryItem": "<idProductType>",
 "table": "<idTableType>"
}

18 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Output JSON data

{
 "id": "<query_item_mapping_4>"
}

Creating a cube for the model
A cube is created for the model.

Creating a cube - ProductSales

The cube command creates a cube called ProductSales. The identifier contained in the response is
used in subsequent commands to refer to the cube.

Input JSON data

{
 "parent": "<modelId>",
 "name": [
 {
 "locale": "en",
 "text": "ProductSales"
 }
]
}

Output JSON data

{
 "id": "<idCube>"
}

Creating a measure dimension for the cube
A measure dimension is created for the cube.

Creating a measure dimension - Measures

The measure_dimension command creates a measure dimension called Measures in the cube. The
identifier contained in the response is used in subsequent commands to refer to the measure dimension.

Input JSON data

{
 "parent": "<idCube>",
 "name": [
 {
 "locale": "en",
 "text": "Measures"
 }
]
}

Sample Cognos Dynamic Cubes model creation 19

Output JSON data

{
 "id": "<idMeasureDimension>"
}

Creating a measure
A measure, Quantity, is created and made the default measure for the measure dimension. In addition,
a mapping, QUANTITY, is created for the measure.

Creating a measure - Quantity

The measure command creates a measure called Quantity. The identifier contained in the response is
used in subsequent commands to refer to the measure.

Input JSON data

{
 "parent": "<idMeasureDimension>",
 "usage": "fact",
 "regularAggregate": "sum",
 "datatype": "int32",
 "scale": "0",
 "name": [
 {
 "locale": "en",
 "text": "Quantity"
 }
],
 "precision": "10"
}

Output JSON data

{
 "id": "<idMeasure>"
}

Setting the Quantity measure as the default measure

The measure_dimension command is used to set the Quantity measure as the default measure for
the Measures measure dimension.

The HTTP request header X-HTTP-Method-Override: PUT is used for this action and the HTTP path
for the request is

http://<server>:<dispatcher_port>/p2pd/servlet/dispatch/FmCommand
/measure_dimension/<idMeasureDimension>

Input JSON data

{
 "defaultMeasure": "<idMeasure>"
}

20 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Output JSON data

{

}

Creating a physical table - ORDER_DETAILS

The physical_table command creates a physical table called ORDER_DETAILS. The identifier
contained in the response is used in subsequent commands to refer to the physical table.

Input JSON data

{
 "parent": "<idMeasureDimension>",
 "datasource": "<idDataSource>",
 "name": "ORDER_DETAILS"
}

Output JSON data

{
 "id": "<idTableOrderDetails>"
}

Creating a query item mapping - QUANTITY

The query_item_mapping command creates a query item mapping.

Input JSON data

{
 "parent": "<idMeasureDimension>",
 "columnName": "QUANTITY",
 "queryItem": "<idMeasure>",
 "table": "<idTableOrderDetails>"
}

Output JSON data

{
 "id": "<query_item_mapping_5>"
}

Creating a relationship between the relational dimension and the measure
dimension

A relationship is created between the relational dimension and the measure dimension.

Creating a relationship - Products to Measures

The relationship command creates a relationship between the Products relational dimension and
the Measures measure dimension.

Sample Cognos Dynamic Cubes model creation 21

Input JSON data

{
 "parent": "<idCube>",
 "leftMaxCardinality": "one",
 "leftMinCardinality": "one",
 "rightMaxCardinality": "many",
 "expression": [
 {
 "columnName": "PRODUCT_NUMBER",
 "objectRef": "<idDimension>",
 "tableName": "PRODUCT",
 "dataSourceRef": "<idDataSource>"
 },
 "=",
 {
 "columnName": "PRODUCT_NUMBER",
 "objectRef": "<idMeasureDimension>",
 "tableName": "ORDER_DETAILS",
 "dataSourceRef": "<idDataSource>"
 }
],
 "rightMinCardinality": "one",
 "rightObjectRef": "<idMeasureDimension>",
 "name": "Products-Measures",
 "leftObjectRef": "<idDimension>"
}

Output JSON data

{
 "id": "<relationship>"
}

Saving the model to the local file system
The model_save_stream command saves the Project model to the local file system. This step is
optional and when the model is saved it can be opened in IBM Cognos Cube Designer.

To save the model, use the following request headers:

• Content-Type: text/plain
• Cache-Control: no-cache
• Connection: Keep-Alive

The HTTP path for the request is

http://<server>:<dispatcher_port>/p2pd/servlet/dispatch/FmCommand
/model_save_stream/<modelId>

Publishing, registering, and starting the cube
The cube is made available to the IBM Cognos Analytics server and is started.

Publishing the ProductSales cube

The cube_deploy command publishes the ProductSales cube to the content store.

22 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Input JSON data

{
 "cube": "<idCube>",
 "packageName": "FMDSDKdemo",
 "refreshDataSources": "true",
 "contentManagerModelPath": "~\/folder[@name='My Folders']"
}

Output JSON data

{

}

Registering the ProductSales cube

The cube_register command registers the ProductSales cube with the IBM Cognos Analytics server.

Input JSON data

{
 "cube": "<idCube>"
}

Output JSON data

{

}

Starting the ProductSales cube

The cube_start command starts the ProductSales cube.

Input JSON data

{
 "cube": "<idCube>"
}

Output JSON data

{

}

Sample Cognos Dynamic Cubes model creation 23

24 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Chapter 4. Virtual cube modeling using the Cognos
Dynamic Cubes API

You can model virtual cubes using the IBM Cognos Dynamic Cubes API. You can create virtual cubes, and
add virtual objects to a virtual cube.

The following topics illustrate the creation of a virtual cube in an existing model. Each step in the virtual
cube modeling process is briefly explained, and the input and output JSON objects are displayed. The
identifiers that are created by the Cognos Dynamic Cubes API are shown as variables, such as
<modelId>. Unless otherwise specified, the HTTP POST method is used for the Cognos Dynamic Cubes
API calls described in this sample program.

Creating a virtual cube
You create a virtual cube in a model that has been opened in the IBM Cognos Dynamic Cubes API. After
you create a virtual cube, you then associate source cubes to the virtual cube.

Creating a virtual cube - VirtualCube

The virtual_cube command creates a virtual cube called VirtualCube. The identifier contained in the
response is used in subsequent commands to refer to the virtual cube.

Input JSON data

{
 "parent":"<modelId>",
 "mergeOperator":"sum"
 "name":"VirtualCube",
}

Output JSON data

{
 "id":"<cubeIdVirtual>"
}

Adding source cubes

The parent model contains source cubes named Sales and Forecast, with ids of <cubeIdSales> and
<cubeIdForecast>, respectively.

The virtual_source command associates the source cubes to the virtual cube. The identifier contained
in the response is used in subsequent commands to refer to the source cube.

Input JSON data

{
 "parent":"<cubeIdVirtual>"
 "sourceObject":"<cubeIdSales>",
}

© Copyright IBM Corp. 2013, 2018 25

Output JSON data

{
 "id":"<vSourceSales>"
}

Input JSON data

{
 "parent":"<cubeIdVirtual>"
 "sourceObject":"<cubeIdForecast>",
}

Output JSON data

{
 "id":"<vSourceForecast>"
}

If one or more of the source cubes is deployed as a data source in the content store, use the sourceName
and sourcePath properties to identify the cube, instead of the sourceObject property.

Creating a virtual measure dimension
You create a virtual measure dimension in an existing virtual cube. After creating the virtual measure
dimension, you associate source measure dimensions with the virtual measure dimension.

Creating a virtual measure dimension - Measures

The virtual_measure_dimension command creates a virtual measure dimension called Measures.
The identifier contained in the response is used in subsequent commands to refer to the virtual measure
dimension.

Input JSON data

{
 "parent":"<cubeIdVirtual>",
 "name":"Measures"
}

Output JSON data

{
 "id":"<vMeasureDimensionId>"
}

Adding source measure dimensions

The parent model contains source measure dimensions with ids of <measureDimensionIdSales> (in the
Sales cube) and <measureDimensionIdForecast> (in the Forecast cube).

The virtual_source command associates the source measure dimensions to the virtual cube. The
parent cubes of the source measure dimensions are identified by their virtual source ids. The identifier
contained in the response is used in subsequent commands to refer to the source measure dimension.

26 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Input JSON data

{
 "parent":"<vMeasureDimensionId>",
 "name":"SalesMDSource"
 "sourceObject":"<measureDimensionIdSales>",
 "sourceParent":"<vSourceSales>",
}

Output JSON data

{
 "id":"<vDimensionMeasureSourceSales>"
}

Input JSON data

{
 "parent":"<vMeasureDimensionId>",
 "name":"Product Forecast Fact MDSource"
 "sourceObject":"<measureDimensionIdForecast>",
 "sourceParent":"<vSourceForecast>",
}

Output JSON data

{
 "id":"<vDimensionMeasureSourceForecast>"
}

Creating a virtual measure
You create a virtual measure in an existing virtual measure dimension. After creating the virtual measure,
you associate source measures with the virtual measure.

Creating a virtual measure - Quantity

The virtual_measure command creates a virtual measure called Quantity. The identifier contained
in the response is used in subsequent commands to refer to the virtual measure dimension.

Input JSON data

{
 "parent":"<vMeasureDimensionId>",
 "dataFormat":"<formatGroup><numberFormat formatType=\"numberFormat\"
 groupDelimiter=\",\" useGrouping=\"true\"/></formatGroup>",
 "name":"Quantity",
 "mergeOperator":"sum"
 "visible":"true",
}

Output JSON data

{
 "id":"<vMeasureIdQuantity>"

Virtual cube modeling using the Cognos Dynamic Cubes API 27

}

Adding a source dimension

The parent model contains a source measure with ids of <measureIdSalesQuantity> in the
SalesMDSource source measure dimension.

The virtual_source command associates the source measure to the virtual cube. The parent measure
dimension of the source measure is identified by its virtual source id. The identifier contained in the
response is used in subsequent commands to refer to the source measure dimension.

Input JSON data

{
 "parent":"<vMeasureIdQuantity>",
 "name":"Quantity"
 "sourceObject":"<measureIdSalesQuantity>",
 "sourceParent":"<vDimensionMeasureSourceSales>",
}

Output JSON data

{
 "id":"<vMeasureSourceQuantity>"
}

Setting the Quantity virtual measure as the default virtual measure

The virtual_measure_dimension command is used to set the Quantity virtual measure as the
default virtual measure for the Measures virtual measure dimension.

The HTTP request header X-HTTP-Method-Override: PUT is used for this action and the HTTP path
for the request is

http://<server>:<dispatcher_port>/p2pd/servlet/dispatch/FmCommand

/virtual_measure_dimension/<vMeasureDimensionId>

Input JSON data

{
 "defaultVirtualMeasure": "<vMeasureIdQuantity>"
}

Output JSON data

{

}

28 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Creating a virtual dimension
You create a virtual dimension in an existing virtual cube. After creating the virtual dimension, you
associate source dimensions with the virtual dimension.

Creating a virtual dimension - Time

The virtual_dimension command creates a virtual dimension called Time. The identifier contained in
the response is used in subsequent commands to refer to the virtual dimension.

Input JSON data

{
 "parent":"<cubeIdVirtual>",
 "dimensionStyle":"time",
 "name":"Time"
}

Output JSON data

{
 "id":"<vDimensionIdTime>"
}

Adding source dimensions

The parent model contains source dimensions with ids of <dimensionIdTime> (in the Sales cube) and
<dimensionIdTimeToMonth> (in the Forecast cube).

The virtual_source command associates the source dimensions to the virtual cube. The parent cubes
of the source dimensions are identified by their virtual source ids. The identifier contained in the
response is used in subsequent commands to refer to the source dimension.

Input JSON data

{
 "parent":"<vDimensionIdTime>",
 "name":"Time"
 "sourceObject":"<dimensionIdTime>",
 "sourceParent":"<vSourceSales>",
}

Output JSON data

{
 "id":"<vSourceDimensionSalesTime>"
}

Input JSON data

{
 "parent":"<vDimensionIdTime>",
 "name":"Time_ to month"
 "sourceObject":"<dimensionIdTimeToMonth>",
 "sourceParent":"<vSourceForecast>",
}

Virtual cube modeling using the Cognos Dynamic Cubes API 29

Output JSON data

{
 "id":"<vSourceDimensionTimeToMonth>"
}

Creating a virtual hierarchy
You create a virtual hierarchy in an existing virtual dimension. After creating the virtual dimension, you
associate source hierarchies with the virtual hierarchy.

Creating a virtual hierarchy - Time

The virtual_hierarchy command creates a virtual hierarchy called Time. The identifier contained in
the response is used in subsequent commands to refer to the virtual hierarchy.

Input JSON data

{
 "parent":"<vDimensionIdTime>",
 "name":"Time"
}

Output JSON data

{
 "id":"<vHiearchyIdTime>"
}

Adding source hierarchies

The parent model contains source hierarchies with ids of <hieararchyIdTime> (in the Time source
dimension) and <hieararchyIdTimeToMonth> (in the Time_ to month source dimension).

The virtual_source command associates the source hierarchies to the virtual hierarchy. The parent
dimensions of the source hierarchies are identified by their virtual source ids. The identifier contained in
the response is used in subsequent commands to refer to the source hierarchy.

Input JSON data

{
 "parent":"<vHiearchyIdTime>",
 "name":"Time"
 "sourceObject":"<hieararchyIdTime>",
 "sourceParent":"<vSourceDimensionSalesTime>",
}

Output JSON data

{
 "id":"<vHiearachySourceTime>"
}

30 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Input JSON data

{
 "parent":"<vHiearchyIdTime>",
 "name":"Time1"
 "sourceObject":"<hieararchyIdTimeToMonth>",
 "sourceParent":"<vSourceDimensionTimeToMonth>",
}

Output JSON data

{
 "id":"<vHiearachySourceTimeToMonth>"
}

Creating a virtual level
You create a virtual level in an existing virtual hierarchy. After creating the virtual level, you associate
source levels with the virtual level.

Creating a virtual level - (All)

The virtual_level command creates a virtual level called (All). The identifier contained in the
response is used in subsequent commands to refer to the virtual level.

Input JSON data

{
 "parent":"<vHiearchyIdTime>",
 "name":"(All)"
}

Output JSON data

{
 "id":"<vLevelIdTimeAll>"
}

Adding source levels

The parent model contains source levels with ids of <levelIdTimeAll> (in the Time hierarchy) and
<levelIdTimeToMonthAll> (in the Time1 hierarchy).

The virtual_source command associates the source levels to the virtual cube. The parent hierarchies
of the source levels are identified by their virtual source ids. The identifier contained in the response is
used in subsequent commands to refer to the source level.

Input JSON data

{
 "parent":"<vLevelIdTimeAll>",
 "name":"(All)"
 "sourceObject":"<levelIdTimeAll>",
 "sourceParent":"<vHiearachySourceTime>",
}

Virtual cube modeling using the Cognos Dynamic Cubes API 31

Output JSON data

{
 "id":"<vLevelSourceAll>"
}

Input JSON data

{
 "parent":"<vLevelIdTimeAll>",
 "name":"(All)1"
 "sourceObject":"<levelIdTimeToMonthAll>",
 "sourceParent":"<vHiearachySourceTimeToMonth>",
}

Output JSON data

{
 "id":"<vLevelSourceAll1>"
}

32 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Chapter 5. Aggregate modeling using the Cognos
Dynamic Cubes API

You can model aggregates using the IBM Cognos Dynamic Cubes API. You can create aggregates, and add
aggregate objects to an aggregate.

The following topics illustrate the creation of an aggregate in an existing model. Each step in the
aggregate modeling process is briefly explained, and the input and output JSON objects are displayed.
The identifiers that are created by the Cognos Dynamic Cubes API are shown as variables, such as
<modelId>. Unless otherwise specified, the HTTP POST method is used for the Cognos Dynamic Cubes
API calls described here.

Creating an aggregate
You create an aggregate in a model that has been opened in the IBM Cognos Dynamic Cubes API. After
you create an aggregate, you can add aggregate measures, dimensions, and other objects to it.

Creating an aggregate - newAggregate

The aggregate command creates an aggregate called newAggregate from the source cube with an id
of <cubeId> in the model. This command is equivalent to the New User Defined In-Memory Aggregate
command in IBM Cognos Cube Designer. The identifier contained in the response is used in subsequent
commands to refer to the aggregate.

Input JSON data

{
 "style":"inMemory",
 "parent":"<cubeId>",
 "name":"newAggregate"
}

Output JSON data

{
 "id":"<aggregateId>"
}

Creating an aggregate measure
You create an aggregate measure in an existing aggregate.

Creating an aggregate measure

The aggregate_measure command creates an aggregate measure from the relational measure with the
id of <measureId> in the source cube. The identifier contained in the response is used in subsequent
commands to refer to the aggregate measure.

Input JSON data

{
 "parent":"<aggregateId>",
 "measure":"<measureId>"

© Copyright IBM Corp. 2013, 2018 33

}

Output JSON data

{
 "id":"<aggrMeasureId>"
}

Creating an aggregate dimension
You create an aggregate dimension in an existing aggregate.

Creating a virtual dimension - Time

The aggregate_dimension command creates an aggregate dimension from the relational dimension
with the id of <dimensionId> in the source cube. The identifier contained in the response is used in
subsequent commands to refer to the aggregate dimension.

Input JSON data

{
 "dimension":"<dimensionId>",
 "parent":"<aggregateId>"
}

Output JSON data

{
 "id":"<aggrDimensionId>"
}

Creating an aggregate hierarchy
You create an aggregate hierarchy in an existing aggregate dimension.

Creating an aggregate hierarchy

The aggregate_hierarchy command creates an aggregate hierarchy from the aggregate dimension
previously created and the relational hierarchy with the id of <hierarchyId> in the source cube. The
identifier contained in the response is used in subsequent commands to refer to the aggregate hierarchy.

Input JSON data

{
 "hierarchy":"<hierarchyId>",
 "parent":"<aggrDimensionId>"
}

Output JSON data

{
 "id":"<aggrHierarchyId>"
}

34 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Creating an aggregate level
You create an aggregate level in an existing aggregate hierarchy.

Creating an aggregate level

The aggregate_level command creates a aggregate level from the aggregate hierarchy previously
created and the relational level with the id of <yearLevelId> in the source cube. The identifier
contained in the response is used in subsequent commands to refer to the aggregate level.

Input JSON data

{
 "level":"<yearLevelId>",
 "parent":"<aggrHierarchyId>"
}

Output JSON data

{
 "id":"<aggrYearLevelId>"
}

Aggregate modeling using the Cognos Dynamic Cubes API 35

36 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Chapter 6. Performing additional tasks using the
Cognos Dynamic Cubes API

You can use the IBM Cognos Dynamic Cubes API to perform a number of tasks related to modeling
dynamic cubes. You can perform the following tasks:

• Filter data using an aggregate slicer.
• Create calculated members and measures
• Using relative time functionality
• Create named sets
• Create parameter maps

The following topics provide instructions on how to perform these tasks using the Cognos Dynamic Cubes
API.

Filter data using an aggregate slicer
You create an aggregate slicer in an in-database aggregate by using the slices property of the cube
command.

To create an aggregate slicer, you create an aggregate and use the slices property to specify an array of
slices. Each slice is expressed as a member unique name that contains a caption, the path to the slice in
the Members folder in IBM Cognos Cube Designer, and the id of the corresponding level.

For example, with a cube that has an id of <cubeId> that contains a Time level named Year with an id
of <yearLevelId>, you can create an aggregate slicer using the years 2010 and 2011 by creating an in-
database aggregate, using the cube command, with the following JSON data.

Input JSON data

{
 "parent":"<cubeId>",
 "style":"aggregate",
 "aggregateOrdinal":"1",
 "name":"aggregateSlice",
 "slices":[
 {
 "caption":"2010",
 "path":"[All].[2010]",
 "member":"<yearLevelId>"
 },
 {
 "caption":"2011",
 "path":"[All].[2011]",
 "member":"<yearLevelId>"
 }
]
}

© Copyright IBM Corp. 2013, 2018 37

Create calculated members and measures
You use the calculated_member command to create calculated members and measures.

Creating a calculated member

You create a calculated member with an expression that is based on the contents of the Members folder
beneath a model object. For instance, if you have a hierarchy that has an id of <allResgionsId> that
contains a level with the id of <regionId>, you can use the calculated_member command with the
following input to create a calculated member that concatenates the Americas and Asia Pacific regions

Input JSON data

{
 "parent":"<allResgionsId>",
 "name":"testExpression",
 "expression":[
 {
 "path":"[All].[710]",
 "caption":"Americas",
 "member":"<regionId>"
 },
 "||",
 {
 "path":"[All].[740]",
 "caption":"Asia Pacific",
 "member":"<regionId>"
 }
]
}

Creating a calculated measure

You create a calculated measure with an expression that is based on an existing measure. For instance, if
you have a measure dimension with an id of <measureDimensionId> that contains a measure with the
id of <salesTargetId>, you can use the calculated_member command with the following input to
create a calculated measure that is equal to 1.5 times the values of the input measure.

Input JSON data

{
 "parent":"<measureDimensionId>",
 "expression":[
 {
 "id":"<salesTargetId>"
 },
 "* 1.5"
]
}

Use relative time functionality
You create predefined and custom relative time members in hierarchies for time-based dimensions with
the relational_hierarchy and relative_time_member commands.

Auto-generating relative time members

You control the auto-generation of prior period and next period relative time members by setting the
generatePriorPeriodsMembers and generateNextPeriodsMembers properties of the

38 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

relational_hierarchy command. For more information, see the topics on relative time members in
the IBM Cognos Dynamic Cubes Developer Guide.

Creating custom relative time members

You use the relative_time_member command to create custom time members. The following
examples of JSON input are based on a time-based hierarchy with an id of <hierarchyId>, and Month
and Quarter levels with ids of <targetId> and <contextId>, respectively. For more information on the
use of the properties shown, see the topics on relative time members in the IBM Cognos Dynamic Cubes
Developer Guide.

Custom single-period definition

{
 "parent":"<hierarchyId>",
 "name":"testSinglePeriod",
 "contextPeriod":"<contextId>",
 "contextPeriodOffset":"-2",
 "style":"simple",
 "targetPeriod":"<targetId>",
 "targetPeriodOffset":"1"
}

Custom period-to-date definition

{
 "parent":"<hierarchyId>",
 "name":"testPeriodToDate",
 "contextPeriod":"<contextId>",
 "contextPeriodOffset":"-2",
 "style":"periodToDate",
 "targetPeriod":"<targetId>",
 "targetPeriodOffset":"1",
 "toDatePeriod":"<contextId>"
}

Custom life-to-date definition

{
 "parent":"<hierarchyId>",
 "name":"testLifeToDate",
 "isLifeToDatePeriod":"true",
 "style":"periodToDate",
 "targetPeriod":"<targetId>",
 "targetPeriodOffset":"1",
 "toDatePeriod":"<contextId>"
}

Custom n-period running total definition

{
 "parent":"<hierarchyId>",
 "name":"testRollingTotal",
 "numberOfPeriods":"10",
 "style":"rollingTotal",
 "targetPeriod":"<targetId>"
}

Performing additional tasks using the Cognos Dynamic Cubes API 39

Create named sets
You use the named_set and named_set_foldercommands to create and update named sets and
folders.

Creating a named set

You create a named set with an expression that is based on the contents of the Members folder beneath a
model object. For instance, a cube with an id of <cubeId> contains a level with the id of
<yearLevelId>. The named_set command is used with the following input to create a named set that
contains data for the year 2012.

Input JSON data

{
 "parent":"<cubeId>",
 "name":"ns1",
 "expression":[
 {
 "path":"[All].[2012]",
 "caption":"2012",
 "member":"<yearLevelId>"
 }
]
}

Output JSON data

{
 "id":"<namedSetId1>"
}

Creating a named set folder

You create a named set folder under a cube. For instance, a cube has an id of <cubeId>. The
named_set_folder command is used with the following input to create a named set folder in the cube.

Input JSON data

{
 "parent":"<cubeId>",
 "name":"nsFolder1"
}

Output JSON data

{
 "id":"<folderId>"
}

Creating another named set

You use the named_set command to create a second named set by adding 1.5 to the named set with an
id of <namedSetId1> and contained in the named set folder with an id of <folderId>.

Input JSON data

{
 "parent":"<folderId>",
 "name":"ns2",
 "expression":[

40 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

 {
 "id":"<namedSetId1>"
 },
 " + 2"]
}

Output JSON data

{
 "id":"<namedSetId2>"
}

Create parameter maps
You use the parameter_map and relational_parameter_map commands to create and update
parameter maps and relational parameter maps.

Creating a parameter map

You create a parameter map by specifying a model id along with an array of key-value pairs and a default
value. In this example you create a parameter map in a model with an id of <modelId> with 2 key-value
pairs and a default value.

Input JSON data

{
 "parent":"<modelId>",
 "name":"TestParameterMap",
 "entries":[
 {
 "key":"a",
 "value":"1"
 },
 {
 "key":"b",
 "value":"2"
 }
],
 "defaultValue":"ABC"
}

Creating a relational parameter map

You create a relational parameter map by specifying a model id along with a default value. In this
example you create a parameter map in a model with an id of <modelId> with a default value.

Input JSON data

{
 "parent":"<modelId>",
 "name":"testRelationalParameterMap",
 "defaultValue":"ABCD"
}

After creating a relational parameter map, you can associate query items and filters with it. In this
example, you create a query item (using the query_item command) associated with the relational
parameter map with an id of <relationalParameterMapId>.

Performing additional tasks using the Cognos Dynamic Cubes API 41

Input JSON data

{
 "parent":"<relationalParameterMapId>",
 "name":"testQueryItem"
}

42 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Chapter 7. Cognos Dynamic Cubes command
reference

There are two types of commands used in the IBM Cognos Dynamic Cube API to create and manipulate
dynamic cubes, control commands and model commands.
Control commands

These commands control model and cube lifecycle functions and miscellaneous tasks. These
commands use the HTTP POST method.

Model commands
These commands are used on specific Cognos Dynamic Cubes objects, such as models, cubes,
dimensions, and measures. These commands can be used to do the following actions:

• Create an object with the HTTP POST method.
• Retrieve the properties of an object with the HTTP GET method.
• Update the properties of an object with the HTTP PUT method.
• Delete an object with the HTTP DELETE method.

Control commands
Control commands control model and cube lifecycle functions and also run miscellaneous tasks.

All control commands use the HTTP POST method. Some control commands require an <object_id> on
the HTTP path. The documentation for each control command describes the function of the command,
and also describes the <object_id> (if required) and the input and output JSON objects.

authenticate
Sets or clears CAM passport information for the model.

<object_id>
id of the model.

Input JSON object
passport

Specifies the CAM passport that is to be set for the session.

The CAM passport is the id property of the CAMPassport that is part of the biBusHeader after a
user authenticates using the IBM Cognos Software Development Kit logon method.

See the IBM Cognos Software Development Kit Developer Guide for more information on
authenticating with the IBM Cognos Analytics server.

If an input JSON object is not specified, the CAM passport is cleared for the session.

Output JSON object
Empty.

cube_deploy
Publishes a cube to Content Manager.

<object_id>
Not applicable.

Input JSON object
cube

Specifies the id of the cube to be published.

© Copyright IBM Corp. 2013, 2018 43

contentManagerModelPath
Specifies the path to publish to in Content Manager.

packageName
Specifies the package name to be created or updated.

refreshDataSources
Specifies whether data sources are to be refreshed. Can be either true or false.

Output JSON object
Empty.

cube_register
Registers a cube with the IBM Cognos Analytics server.

<object_id>
Not applicable.

Input JSON object
cube

Specifies the id of the cube to register.
Output JSON object

Empty.

cube_start
Starts a cube.

<object_id>
Not applicable.

Input JSON object
cube

Specifies the id of the cube to start.
Output JSON object

Empty.

model_close
Closes a model.

<object_id>
Not applicable.

Input JSON object
model

Specifies the id of the model that is to be closed.
Output JSON object

Empty.

model_new
Creates a model either in memory or in a specified location.

<object_id>
Not applicable.

Input JSON object
filePath

If specified, store the model files in this location. The location is relative to the IBM Cognos
Analytics server. Otherwise, the model is stored in memory.

44 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

name
Specifies the name of the project.

namespace
Specifies the namespace of the project.

locale
Specifies the default locale of the project.

Output JSON object
id

An identifier for the model. This identifier can be used to refer to the model in subsequent
commands.

model_open
Opens a model from a file location or from a Content Manager path.

<object_id>
Not applicable.

Input JSON object
filePath

If specified, open the model files from this location. The location is relative to the IBM Cognos
Analytics server.

contentManagerModelPath
If specified, open the model files from this Content Manager location.

Either filePath or contentManagerModelPath can be specified, but not both.

Output JSON object
id

An identifier for the model. This identifier can be used to refer to the model in subsequent
commands.

model_open_stream
Opens a model from a stream that is passed in the HTTP request.

<object_id>
Not applicable.

Input stream
Specifies the input stream that consists of the model to open.

Output JSON object
Empty.

model_save
Saves an open model.

<object_id>
Not applicable.

Input JSON object
model

Specifies the id of the model to be saved.
Output JSON object

Empty.

Cognos Dynamic Cubes command reference 45

model_save_as
Saves a model in a new location.

<object_id>
Not applicable.

Input JSON object
model

Specifies the id of the model that is to be saved.
filePath

Specifies the location to store the model files. The location is relative to the IBM Cognos Analytics
server.

Output JSON object
Empty.

model_save_stream
Saves a model in the output stream of the HTTP response.

The HTTP request must include a Content-Type: text/plain request header.
<object_id>

id of the model.
Input

Not applicable.
Output

The model that is being saved.

search
Retrieves the id of an object that is based on a search path in a model.

<object_id>
id of the model to be searched.

Input JSON object
path

Specifies the path to an object, such as [Model].[Products]. These paths can be found in the
model file (.fmd).

Output JSON object
id

The id property of the object found.
type

The type of the object found. For example, relational_dimension.

Model commands
Model commands are used on specific IBM Cognos Dynamic Cubes objects, such as models, cubes,
dimensions, and measures. These commands can be used to create and delete objects, as well as to
retrieve and modify object properties.

Detailed documentation for objects and object properties is available in the IBM Cognos Dynamic Cubes
User Guide and in the model schema reference in the IBM Cognos Software Development Kit Framework
Manager Developer Guide and is not repeated here.

The HTTP request and response objects vary depending on which of the four HTTP methods are being
used.

46 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

HTTP POST method

Model commands use the HTTP POST method to create objects.

<object_id>
Not applicable.

Input JSON object
parent

Specifies the id of the parent object of the object that is being created.
other parameters

Extra parameters are specified depending on the type of object that is being created. These
parameters are described in the documentation for each model command.

Output JSON object
id

An identifier for the object. This identifier can be used to refer to the object in subsequent
commands.

HTTP GET method

Model commands use the HTTP GET method to retrieve the properties of an object.

<object_id>
Specifies the id of the object whose properties are being retrieved.

Input JSON object
Not applicable.

Output JSON object
Contains property names and values for the object. These properties vary depending on the type of
object and are described in the documentation for each model command.

HTTP PUT method

Model commands use the HTTP PUT method to update one or more of the properties of an object.

<object_id>
Specifies the id of the object whose properties are being updated.

Input JSON object
Contains property names and values that are being updated for the object. The properties that can be
updated vary depending on the type of object and are described in the documentation for each model
command.

Output JSON object
Empty.

HTTP DELETE method

Model commands use the HTTP DELETE method to delete an object.

<object_id>
Specifies the id of the object to delete.

Input JSON object
Not applicable.

Output JSON object
Empty.

The documentation for each model command describes which properties are applicable for the POST,
GET, and PUT methods.

Cognos Dynamic Cubes command reference 47

aggregate
The aggregate command creates and deletes aggregates, and also updates and retrieves the properties
of an aggregate.

The following table lists the properties of an aggregate, describes each of them, and specifies whether
each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET method (as
an output).

Table 1: Aggregate properties for input and output methods

Name Description HTTP methods

parent id of the parent cube. POST

dimensions Array of id values of child aggregate
dimensions.

GET

measures Array of id values of child aggregate
measures.

GET

name Name.
POST
GET
PUT

style Aggregate style. Can be inDatabase or
inMemory.

Important: Only inMemory is currently
supported. To create an in-database
aggregate, create a cube with the
aggregate style.

POST
GET

aggregate_dimension
The aggregate_dimension command creates and deletes aggregate dimensions, and also updates and
retrieves the properties of an aggregate dimension.

The following table lists the properties of an aggregate dimension, describes each of them, and specifies
whether each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET
method (as an output).

Table 2: Aggregate dimension properties for input and output methods

Name Description HTTP methods

parent id of the parent aggregate. POST

aggregateHierarchies Array of id values of child aggregate
hierarchies.

GET

dimension id of the relational dimension used to create
this aggregate dimension. POST

GET

aggregate_hierarchy
The aggregate_hierarchy command creates and deletes aggregate hierarchies, and also updates and
retrieves the properties of an aggregate hierarchy.

The following table lists the properties of an aggregate hierarchy, describes each of them, and specifies
whether each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET
method (as an output).

48 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Table 3: Aggregate hierarchy properties for input and output methods

Name Description HTTP methods

parent id of the parent aggregate dimension. POST

aggregateLevels Array of id values of child aggregate levels. GET

hierarchy id of the relational hierarchy used to create
this aggregate hierarchy. POST

GET

aggregate_level
The aggregate_level command creates and deletes aggregate levels, and also updates and retrieves
the properties of an aggregate level.

The following table lists the properties of an aggregate level, describes each of them, and specifies
whether each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET
method (as an output).

Table 4: Aggregate level properties for input and output methods

Name Description HTTP methods

parent id of the parent aggregate hierarchy. POST

hierarchy guid of the relational hierarchy used to
create this aggregate level.

GET

level id of the relational level used to create this
aggregate level. POST

GET

aggregate_measure
The aggregate_measure command creates and deletes aggregate measures, and also updates and
retrieves the properties of a aggregate measure.

The following table lists the properties of an aggregate measure, describes each of them, and specifies
whether each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET
method (as an output).

Table 5: Aggregate measure properties for input and output methods

Name Description HTTP methods

parent id of the parent aggregate. POST

measure id of the measure used to create this
aggregate measure. POST

GET

calculated_member
The calculated_member command creates and deletes calculated members and measures , and also
updates and retrieves the properties of a calculated member or measure.

The following table lists the properties of a calculated member describes each of them, and specifies
whether each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET
method (as an output).

Cognos Dynamic Cubes command reference 49

Table 6: Calculated member properties for input and output methods

Name Description HTTP methods

parent id of the parent relational hierarchy. POST

comment Comment.
POST
GET
PUT

description Description. Localized text.
POST
GET
PUT

name Name. Localized text.
POST
GET
PUT

screenTip Screen tip. Localized text.
POST
GET
PUT

expression Expression that defines the calculated
member or measure. POST

GET

cube
The cube command creates and deletes cubes, and also updates and retrieves the properties of a cube.

The following table lists the properties of a cube, describes each of them, and specifies whether each
property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET method (as an
output).

Table 7: Cube properties for input and output methods

Name Description HTTP methods

parent id of the parent model or namespace. POST

accessRules Array of id values of child security filters. GET

aggregateOrdinal Ordinal, only applicable for an aggregate.
POST
GET
PUT

comment Comment.
POST
GET
PUT

description Description. Localized text.
POST
GET
PUT

50 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Table 7: Cube properties for input and output methods (continued)

Name Description HTTP methods

dimensions Array of id values of child relational
dimensions.

GET

inDatabaseAggregates Array of id values of child in-database
aggregates.

GET

inMemoryAggregates Array of id values of child in-memory
aggregates.

GET

measureDimension id of the child measure dimension. GET

name Name. Localized text.
POST
GET
PUT

namedSets Array of id values of child named sets. GET

namedSetFolders Array of id values of child named set folders. GET

relationships Array of id values of child relationships. GET

removeNonExistentTuples Remove non-existent tuples. Can be either
true (default) or false. POST

GET
PUT

screenTip Screen tip. Localized text.
POST
GET
PUT

slices Array of member unique names of child
slices. For more information, see Filter data
using an aggregate slicer.

POST
GET
PUT

style Cube style. Can be regular, aggregate, or
virtual.

Using the aggregate style creates an in-
database aggregate. To create an in-memory
aggregate, create an aggregate.

POST
GET

datasource
The datasource command creates and deletes data sources, and also updates and retrieves the
properties of a data source.

The following table lists the properties of a data source, describes each of them, and specifies whether
each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET method (as
an output).

Table 8: Data source properties for input and output methods

Name Description HTTP methods

parent id of the parent model. POST

Cognos Dynamic Cubes command reference 51

Table 8: Data source properties for input and output methods (continued)

Name Description HTTP methods

catalog Catalog name. Required when you are
importing metadata from a Content Manager
data source.

POST
GET
PUT

cmDataSource Content Manager data source name.
Required when you are importing metadata
from a Content Manager data source.

POST
GET
PUT

cube Cube name. Required when you are
importing metadata from an IBM InfoSphere®

Warehouse Cubing Services cube
POST
GET
PUT

functionSetId Set of functions available in this data source.
POST
GET
PUT

interface Interface.
POST
GET
PUT

queryProcessing Query processing, such as limitedLocal or
databaseOnly. POST

GET
PUT

queryType Query type, such as relational or
multidimensional. POST

GET
PUT

name Name.
POST
GET
PUT

rollupProcessing Rollup processing, such as unspecified,
local, database, or extended. POST

GET
PUT

schema Schema name. Required when you are
importing metadata from a Content Manager
data source.

POST
GET
PUT

52 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

folder
The folder command creates and deletes folders, and also updates and retrieves the properties of a
folder.

The following table lists the properties of a folder, describes each of them, and specifies whether each
property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET method (as an
output).

Table 9: Folder properties for input and output methods

Name Description HTTP methods

parent id of the parent model or folder. POST

comment Comment.
POST
GET
PUT

cubes Array of id values of child cubes. GET

description Description. Localized text.
POST
GET
PUT

dimensions Array of id values of child relational
dimensions.

GET

folders Array of id values of child relational folders. GET

name Name. Localized text.
POST
GET
PUT

namespaces Array of id values of child namespaces. GET

querySubjects Array of id values of child query subjects.
POST
GET
PUT

screenTip Screen tip. Localized text.
POST
GET
PUT

virtualCubes Array of id values of child virtual cubes. GET

level
The level command creates and deletes levels, and also updates and retrieves the properties of a level.

The following table lists the properties of a level, describes each of them, and specifies whether each
property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET method (as an
output).

Table 10: Level properties for input and output methods

Name Description HTTP methods

parent id of the parent relational dimension or
relational hierarchy.

POST

Cognos Dynamic Cubes command reference 53

Table 10: Level properties for input and output methods (continued)

Name Description HTTP methods

comment Comment.
POST
GET
PUT

currentPeriod Current period.
POST
GET
PUT

description Description. Localized text.
POST
GET
PUT

isUnique Indicates that level members can be
uniquely identified by business keys. Can be
true or false.

POST
GET
PUT

levelKeys Array of id values of child query items that
are level keys.

GET

levelType Level type.
POST
GET
PUT

name Name. Localized text.
POST
GET
PUT

screenTip Screen tip. Localized text.
POST
GET
PUT

measure
The measure command creates and deletes measures, and also updates and retrieves the properties of a
measure.

The following table lists the properties of a measure, describes each of them, and specifies whether each
property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET method (as an
output).

Table 11: Measure properties for input and output methods

Name Description HTTP methods

parent id of the parent measure dimension or
measure folder.

POST

comment Comment.
POST
GET
PUT

54 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Table 11: Measure properties for input and output methods (continued)

Name Description HTTP methods

currency The ISO currency code.
POST
GET
PUT

datatype Data type. See the model schema reference
in the IBM Cognos Software Development Kit
Framework Manager Developer Guide for
allowable values.

POST
GET
PUT

description Description. Localized text.
POST
GET
PUT

format Data format.
POST
GET
PUT

isHidden Inverse of visible. Can be true or false.
POST
GET
PUT

isUnsortable Indicates that data values for this object can
be sorted or compared. Can be true or
false.

POST
GET
PUT

name Name. Localized text.
POST
GET
PUT

precision Precision.
POST
GET
PUT

promptType Prompt type. See the model schema
reference in the IBM Cognos Software
Development Kit Framework Manager
Developer Guide for allowable values.

POST
GET
PUT

regularAggregate Regular aggregate. See the model schema
reference in the IBM Cognos Software
Development Kit Framework Manager
Developer Guide for allowable values.

POST
GET
PUT

roles Array of id values of child query item roles. GET

scale Scale.
POST
GET
PUT

Cognos Dynamic Cubes command reference 55

Table 11: Measure properties for input and output methods (continued)

Name Description HTTP methods

screenTip Screen tip. Localized text.
POST
GET
PUT

size Maximum size of a value in bytes.
POST
GET
PUT

usage Usage type. See the model schema reference
in the IBM Cognos Software Development Kit
Framework Manager Developer Guide for
allowable values.

POST
GET
PUT

measure_dimension
The measure_dimension command creates and deletes measure dimensions, and also updates and
retrieves the properties of a measure dimension.

The following table lists the properties of a measure dimension, describes each of them, and specifies
whether each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET
method (as an output).

Table 12: Measure dimension properties for input and output methods

Name Description HTTP methods

parent id of the parent model. POST

calculatedMeasures Array of id values of child calculated
measures.

GET

comment Comment.
POST
GET
PUT

defaultMeasure id of the default measure or calculated
measure. The measure or calculated
measure must exist.

GET
PUT

description Description. Localized text.
POST
GET
PUT

filters Array of id values of child relational filters. GET

folders Array of id values of child measure folders. GET

measures Array of id values of child measures. GET

name Name. Localized text.
POST
GET
PUT

56 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Table 12: Measure dimension properties for input and output methods (continued)

Name Description HTTP methods

screenTip Screen tip. Localized text.
POST
GET
PUT

measure_folder
The measure_folder command creates and deletes measure folders, and also updates and retrieves
the properties of a measure folder.

The following table lists the properties of a measure folder, describes each of them, and specifies whether
each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET method (as
an output).

Table 13: Measure folder properties for input and output methods

Name Description HTTP methods

parent id of the parent measure dimension or
measure folder.

POST

calculatedMeasures Array of id values of child calculated
measures.

GET

comment Comment.
POST
GET
PUT

description Description. Localized text.
POST
GET
PUT

folders Array of id values of child measure folders. GET

measures Array of id values of child measures. GET

name Name. Localized text.
POST
GET
PUT

screenTip Screen tip. Localized text.
POST
GET
PUT

model
The model command deletes models, and also updates and retrieves the properties of a model.

To create a new model, use the model_new command.

The following table lists the properties of a model, describes each of them, and specifies whether each
property is applicable in an HTTP PUT method (as an input), or in an HTTP GET method (as an output).

Cognos Dynamic Cubes command reference 57

Table 14: Model properties for input and output methods

Name Description HTTP methods

comment Comment.
GET
PUT

cubes Array of id values of child cubes. GET

datasources Array of id values of child data sources. GET

defaultLocale Default locale. GET

description Description. Localized text.
GET
PUT

dimensions Array of id values of child relational
dimensions.

GET

folders Array of id values of child folders. GET

locales Array of locales. GET

name Name. Localized text.
GET
PUT

namespaces Array of id values of child namespaces. GET

parameterMaps Array of id values of child parameter maps. GET

projectName Name of the project. GET

querySubjects Array of id values of child relational query
subjects.

GET

screenTip Screen tip. Localized text.
POST
GET
PUT

virtualCubes Array of id values of child virtual cubes. GET

named_set
The named_set command creates and deletes named sets, and also updates and retrieves the properties
of a named set.

The following table lists the properties of a named set, describes each of them, and specifies whether
each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET method (as
an output).

Table 15: Named set properties for input and output methods

Name Description HTTP methods

parent id of the parent cube or named set folder. POST

comment Comment.
POST
GET
PUT

58 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Table 15: Named set properties for input and output methods (continued)

Name Description HTTP methods

description Description. Localized text.
POST
GET
PUT

expression Expression that defines the named set.
POST
GET

name Name. Localized text.
POST
GET
PUT

screenTip Screen tip. Localized text.
POST
GET
PUT

named_set_folder
The named_set_folder command creates and deletes named set folders, and also updates and
retrieves the properties of a named set folder.

The following table lists the properties of a named set folder, describes each of them, and specifies
whether each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET
method (as an output).

Table 16: Named set folder properties for input and output methods

Name Description HTTP methods

parent id of the parent cube or named set folder. POST

namedSets Array of id values of child named sets. GET

namedSetFolders Array of id values of child named set folders.
POST
GET
PUT

comment Comment.
POST
GET
PUT

description Description. Localized text.
POST
GET
PUT

name Name. Localized text.
POST
GET
PUT

Cognos Dynamic Cubes command reference 59

Table 16: Named set folder properties for input and output methods (continued)

Name Description HTTP methods

screenTip Screen tip. Localized text.
POST
GET
PUT

namespace
The namespace command creates and deletes namespaces, and also updates and retrieves the
properties of a namespace.

The following table lists the properties of a namespace, describes each of them, and specifies whether
each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET method (as
an output).

Table 17: Namespace properties for input and output methods

Name Description HTTP methods

parent id of the parent model, namespace, or
folder.

POST

comment Comment.
POST
GET
PUT

cubes Array of id values of child cubes. GET

description Description. Localized text.
POST
GET
PUT

dimensions Array of id values of child relational
dimensions.

GET

folders Array of id values of child folders. GET

name Name. Localized text.
POST
GET
PUT

namespaces Array of id values of child namespaces. GET

querySubjects Array of id values of child relational query
subjects.

GET

screenTip Screen tip. Localized text.
POST
GET
PUT

virtualCubes Array of id values of child virtual cubes. GET

60 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

parameter_map
The parameter_map command creates and deletes parameter maps, and also updates and retrieves the
properties of a parameter map.

The following table lists the properties of a parameter map, describes each of them, and specifies
whether each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET
method (as an output).

Table 18: Parameter map properties for input and output methods

Name Description HTTP methods

parent id of the parent model. POST

entries Array of key-value pairs.
POST
GET
PUT

defaultValue Default value.
POST
GET
PUT

name Name.
POST
GET
PUT

physical_association
The physical_association command creates and deletes physical associations, and also to update
and retrieve the properties of a physical association.

The following table lists the properties of a physical association, describes each of them, and specifies
whether each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET
method (as an output).

Table 19: Physical association properties for input and output methods

Name Description HTTP methods

parent id of the parent physical join. POST

leftColumn Name of the left column.
POST
GET

operator Operator that is used to join left and right
columns. Can be one of none, equals,
notEquals, lessThan, greaterThan,
lessThanOrEquals, or
greaterThanOrEquals.

POST
GET
PUT

rightColumn Name of the right column.
POST
GET

Cognos Dynamic Cubes command reference 61

physical_join
The physical_join command creates and deletes physical joins, and also updates and retrieves the
properties of a physical join.

The following table lists the properties of a physical join, describes each of them, and specifies whether
each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET method (as
an output).

Table 20: Physical join properties for input and output methods

Name Description HTTP methods

parent id of the parent relational dimension or
relational query subject.

POST

associations Array of id values of child physical
associations.

GET

leftMaxCardinality Maximum cardinality of the left-side physical
table. Can be one or many. POST

GET
PUT

leftMinCardinality Minimum cardinality of the left-side physical
table. Can be one or many. POST

GET
PUT

leftTable id of the left-side physical table.
POST
GET

name Name.
POST
GET
PUT

rightMaxCardinality Maximum cardinality of the right-side
physical table. Can be one or many. POST

GET
PUT

rightMinCardinality Minimum cardinality of the right-side
physical table. Can be one or many. POST

GET
PUT

rightTable id of the right-side physical table.
POST
GET

physical_table
The physical_table method creates and deletes physical tables, and also updates and retrieves the
properties of a physical table.

The following table lists the properties of a physical table, describes each of them, and specifies whether
each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET method (as
an output).

62 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Table 21: Physical table properties for input and output methods

Name Description HTTP methods

parent id of the parent relational dimension or
relational query subject.

POST

datasource id of the data source that contains the
physical table. POST

GET
PUT

name Name.
POST
GET
PUT

query_item
The query_item command creates and deletes query items, and also updates and retrieves the
properties of a query item.

The following table lists the properties of a query item, describes each of them, and specifies whether
each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET method (as
an output).

Table 22: Query item properties for input and output methods

Name Description HTTP methods

parent id of the parent level, relational query
subject, or relational parameter map.

POST

currency The ISO currency code.
POST
GET
PUT

datatype Data type. See the model schema reference
in the IBM Cognos Software Development Kit
Framework Manager Developer Guide for
allowable values.

POST
GET
PUT

format Data format.
POST
GET
PUT

isHidden Inverse of visible. Can be true or false
POST
GET
PUT

isLevelKey Indicates that this query item is a level key.
Can be true or false POST

GET
PUT

isUnsortable Indicates that data values for this object can
be sorted or compared. Can be true or
false.

POST
GET
PUT

Cognos Dynamic Cubes command reference 63

Table 22: Query item properties for input and output methods (continued)

Name Description HTTP methods

precision Precision.
POST
GET
PUT

promptType Prompt type. See the model schema
reference in the IBM Cognos Software
Development Kit Framework Manager
Developer Guide for allowable values.

POST
GET
PUT

regularAggregate Regular aggregate. See the model schema
reference in the IBM Cognos Software
Development Kit Framework Manager
Developer Guide for allowable values.

POST
GET
PUT

roles Array of id values of child query item roles. GET

scale Scale.
POST
GET
PUT

size Maximum size of a value in bytes.
POST
GET
PUT

usage Usage type. See the model schema reference
in the IBM Cognos Software Development Kit
Framework Manager Developer Guide for
allowable values.

POST
GET
PUT

query_item_mapping
The query_item_mapping command creates and deletes query item mappings, and also updates and
retrieves the properties of a query item mapping.

The following table lists the properties of a query item mapping, describes each of them, and specifies
whether each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET
method (as an output).

Table 23: Query item mapping properties for input and output methods

Name Description HTTP methods

parent id of the parent relational dimension or
relational query subject.

POST

columnName Column name.
POST
GET

queryItem id of the query item.
POST
GET

64 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Table 23: Query item mapping properties for input and output methods (continued)

Name Description HTTP methods

sqlObject id of the SQL object.
POST
GET

table id of the physical table.
POST
GET

query_item_role
The query_item_role command creates and deletes query item roles, and also updates and retrieves
the properties of a query item role.

The following table lists the properties of a query item role, describes each of them, and specifies whether
each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET method (as
an output).

Table 24: Query item role properties for input and output methods

Name Description HTTP methods

parent id of the parent query item or measure. POST

isIntristic If set to true, indicates that the attribute
with this role is not displayed in the studios
but is available by using the roleValue
function. If more than one role is specified,
the intrinsic attribute is ANDed for all roles.
The default value is false.

GET

name Name. Localized text.
POST
GET
PUT

relational_dimension
The relational_dimension command creates and deletes relational dimensions, and also to update
and retrieve the properties of a relational dimension.

The following table lists the properties of a relational dimension, describes each of them, and specifies
whether each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET
method (as an output).

Table 25: Relational dimension properties for input and output methods

Name Description HTTP methods

parent id of the parent model, cube, or folder. POST

comment Comment.
POST
GET
PUT

createRelationship Specifies whether a simple relationship with
no expression is created between the
dimension and the measure dimension of the
parent cube, if any. Can be true or false.

POST
GET

Cognos Dynamic Cubes command reference 65

Table 25: Relational dimension properties for input and output methods (continued)

Name Description HTTP methods

defaultHierarchy id of the default hierarchy. GET

description Description. Localized text.
POST
GET
PUT

dimensionStyle Dimension type. Can be regular, measure,
or time.

GET

filters Array of id values of child relational filters. GET

levels Array of id values of child levels. GET

multilingualSupport Multilingual support. Can be disabled,
byRow, or byColumn. POST

GET
PUT

name Name. Localized text.
POST
GET
PUT

relationalHierarchies Array of id values of child relational
hierarchies.

GET

screenTip Screen tip. Localized text.
POST
GET
PUT

relational_filter
The relational_filter command creates and deletes relational filters, and also updates and
retrieves the properties of a relational filter.

The following table lists the properties of a relational filter, describes each of them, and specifies whether
each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET method (as
an output).

Table 26: Relational filter properties for input and output methods

Name Description HTTP methods

parent id of the parent relational dimension,
relational measure, or relational parameter
map.

POST

expression Expression that defines the filter value.
POST
GET
PUT

generateKeyFilter Generate a measure dimension filter. Can be
true or false. POST

GET
PUT

66 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Table 26: Relational filter properties for input and output methods (continued)

Name Description HTTP methods

name Name.
POST
GET
PUT

relational_hierarchy
The relational_hierarchy command creates and deletes relational hierarchies, and also to update
and retrieve the properties of a relational hierarchy.

The following table lists the properties of a relational hierarchy, describes each of them, and specifies
whether each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET
method (as an output).

Table 27: Relational hierarchy properties for input and output methods

Name Description HTTP methods

parent id of the parent relational dimension. POST

accessRules Array of id values of child security filters. GET

balanced Balanced hierarchy. Can be true or
false. POST

GET
PUT

calculatedMembers Array of id values of child calculated
members.

GET

captionForMembers Caption of padding members. Can be
empty or parent. POST

GET
PUT

comment Comment.
POST
GET
PUT

defaultHierarchy Specifies that this hierarchy is the default
hierarchy. Can be true or false. POST

GET
PUT

description Description. Localized text.
POST
GET
PUT

generateNextPeriodsMembers Specifies whether next-period time
members should be auto-generated. Can
be true or false.

POST
GET
PUT

Cognos Dynamic Cubes command reference 67

Table 27: Relational hierarchy properties for input and output methods (continued)

Name Description HTTP methods

generatePriorPeriodsMembers Specifies whether prior-period time
members should be auto-generated. Can
be true or false.

POST
GET
PUT

hasRelativeTimeMembers Add relative time members. Can be true
or false. POST

GET
PUT

includeRelativeTimeSubtree Specifies whether the relative time
members sub-tree should be displayed in
IBM Cognos Cube Designer. Can be true
or false.

POST
GET
PUT

isParentChild Parent-Child. Can be true or false.
POST
GET

levels Array of id values of child levels.
POST
GET
PUT

multiRoot Multiple root members. Can be true or
false. POST

GET
PUT

name Name. Localized text.
POST
GET
PUT

ragged Ragged hierarchy. Can be true or false.
POST
GET
PUT

relativeTimeMembers Array of id values of child relative time
members. POST

GET
PUT

rootCaption Root caption. Localized text
POST
GET
PUT

rootMember Specifies the external name of the root
member for a hierarchy as captured from
the data source. This property is only
applicable to OLAP sources.

POST
GET
PUT

68 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Table 27: Relational hierarchy properties for input and output methods (continued)

Name Description HTTP methods

screenTip Screen tip. Localized text.
POST
GET
PUT

relational_parameter_map
The relational_parameter_map command creates and deletes relational parameter maps, and also
updates and retrieves the properties of a relational parameter map.

The following table lists the properties of a relational parameter map, describes each of them, and
specifies whether each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP
GET method (as an output).

Table 28: Relational parameter map properties for input and output methods

Name Description HTTP methods

parent id of the parent model. POST

name Name.
POST
GET
PUT

filters Array of id values of child relational filters. GET

queryItems Array of id values of child query items. GET

defaultValue Default value.
POST
GET
PUT

relational_query_subject
The relational_query_subject command is used to create and delete relational query subjects, and
also to update and retrieve the properties of a relational query subject.

For more information about relational query subjects, see the topics on query subjects in the IBM Cognos
Framework Manager User Guide.

The following table lists the properties of a relational query subject, describes each of them, and specifies
whether each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET
method (as an output).

Table 29: Relational query subject properties for input and output methods

Name Description HTTP methods

parent id of the parent model, namespace, or
folder.

POST

comment Comment.
POST
GET
PUT

Cognos Dynamic Cubes command reference 69

Table 29: Relational query subject properties for input and output methods (continued)

Name Description HTTP methods

description Description. Localized text.
POST
GET
PUT

joins Array of id values of child physical joins. GET

name Name. Localized text.
POST
GET
PUT

queryItemMappings Array of id values of child query item
mappings.

GET

queryItems Array of id values of child query items. GET

screenTip Screen tip. Localized text.
POST
GET
PUT

tables Array of id values of child physical tables. GET

relationship
The relationship command creates and deletes relationships, and also updates and retrieves the
properties of a relationship.

The following table lists the properties of a relationship, describes each of them, and specifies whether
each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET method (as
an output).

Table 30: Relationship properties for input and output methods

Name Description HTTP methods

parent id of the parent cube. POST

expression Expression joining left-side and right-side
objects. POST

GET
PUT

leftObjectRef id of the left-side object.
POST
GET
PUT

leftMaxCardinality Maximum cardinality of the left-side object.
Can be one or many. POST

GET
PUT

leftMinCardinality Minimum cardinality of the left-side object.
Can be one or many. POST

GET
PUT

70 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Table 30: Relationship properties for input and output methods (continued)

Name Description HTTP methods

name Name.
POST
GET
PUT

rightObjectRef id of the right-side object.
POST
GET
PUT

rightMaxCardinality Maximum cardinality of the right-side object.
Can be one or many. POST

GET
PUT

rightMinCardinality Minimum cardinality of the right-side object.
Can be one or many. POST

GET
PUT

relative_time_member
The relative_time_member command creates and deletes cubes, and also updates and retrieves the
properties of a relative time member.

The following table lists the properties of a relative time member, describes each of them, and specifies
whether each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET
method (as an output).

Table 31: Relative time member properties for input and output methods

Name Description HTTP methods

parent id of the parent hierarchy. POST

comment Comment.
POST
GET
PUT

description Description. Localized text.
POST
GET
PUT

name Name. Localized text.
POST
GET
PUT

contextPeriod id of the level containing the context period.
POST
GET
PUT

Cognos Dynamic Cubes command reference 71

Table 31: Relative time member properties for input and output methods (continued)

Name Description HTTP methods

contextPeriodOffset Offset from the context period.
POST
GET
PUT

isLifeToDatePeriod Specifies a life-to-date definition. Can be
either true or false (default). POST

GET
PUT

numberOfPeriods Specifies the number of time periods
POST
GET
PUT

targetPeriod id of the level containing the target period.
POST
GET
PUT

targetPeriodOffset Offset from the target period.
POST
GET
PUT

toDatePeriod id of the level containing the to-date period.
POST
GET
PUT

screenTip Screen tip. Localized text.
POST
GET
PUT

style Relative time member style. Can be simple,
periodToDate, or rollingTotal. POST

GET

security_filter
The security_filter command creates and deletes security filters, and also updates and retrieves the
properties of a security filter.

The following table lists the properties of a security filter, describes each of them, and specifies whether
each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET method (as
an output).

Table 32: Security filter properties for input and output methods

Name Description HTTP methods

parent id of the parent relational hierarchy, cube, or
security view.

POST

72 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Table 32: Security filter properties for input and output methods (continued)

Name Description HTTP methods

expression Expression of the access rule.
POST
GET
PUT

isAllAccess All access. Can be true or false.
POST
GET

memberAccess Scope. Can be grantAll, grantMembers,
grantMembersAndDescendants,
grantMembersAndAncestors,
grantMembersDescendantsAndAncesto
rs, or denyMembersAndDescendants

POST
GET
PUT

name Name.
POST
GET
PUT

objectReference The id of the object that is being filtered.
POST
GET

permission Permission type. Can be grant or deny.
POST
GET

security_view
The security_view command creates and deletes security views, and also updates and retrieves the
properties of a security view.

The following table lists the properties of a security view, describes each of them, and specifies whether
each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET method (as
an output).

Table 33: Security view properties for input and output methods

Name Description HTTP methods

parent id of the parent cube. POST

filters Array of ids of child security filters.
POST
GET
PUT

name Name.
POST
GET
PUT

Cognos Dynamic Cubes command reference 73

sql_object
The sql_object command creates and deletes SQL objects, and also to update and retrieve the
properties of a SQL object.

For more information about SQL objects, see the topic on data source query subjects in the IBM Cognos
Framework Manager User Guide.

The following table lists the properties of a SQL object, describes each of them, and specifies whether
each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET method (as
an output).

Table 34: SQL object properties for input and output methods

Name Description HTTP methods

parent id of the parent relational query subject. POST

datasource id of the data source against which the SQL
object is run. POST

GET

name Name.
POST
GET

sqlStatement The SQL statement as a string.
POST
GET

virtual_cube
The virtual_cube command creates and deletes virtual cubes, and also updates and retrieves the
properties of a virtual cube.

The following table lists the properties of a virtual cube, describes each of them, and specifies whether
each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET method (as
an output).

Table 35: Virtual cube properties for input and output methods

Name Description HTTP methods

parent id of the parent model or namespace. POST

comment Comment.
POST
GET
PUT

description Description. Localized text.
POST
GET
PUT

name Name. Localized text.
POST
GET
PUT

namedSets Array of id values of child named sets. GET

namedSetFolders Array of id values of child named set folders. GET

74 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Table 35: Virtual cube properties for input and output methods (continued)

Name Description HTTP methods

screenTip Screen tip. Localized text.
POST
GET
PUT

sourceObjects Array of id values of virtual source objects.
GET

virtualMeasureDimension id of the child virtual measure dimension. GET

virtualDimensions Array of id values of child virtual dimensions. GET

virtual_dimension
The virtual_dimension command creates and deletes virtual dimensions, and also updates and
retrieves the properties of a virtual dimension.

The following table lists the properties of a virtual dimension, describes each of them, and specifies
whether each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET
method (as an output).

Table 36: Virtual dimension properties for input and output methods

Name Description HTTP methods

parent id of the parent virtual cube. POST

comment Comment.
POST
GET
PUT

defaultVirtualHierarchy id of the default virtual hierarchy.
POST
GET

description Description. Localized text.
POST
GET
PUT

dimensionStyle Dimension type. Can be regular or time.
POST
GET

name Name. Localized text.
POST
GET
PUT

screenTip Screen tip. Localized text.
POST
GET
PUT

sourceObjects Array of id values of virtual source objects.
GET

Cognos Dynamic Cubes command reference 75

Table 36: Virtual dimension properties for input and output methods (continued)

Name Description HTTP methods

virtualHierarchies Array of id values of child virtual hierarchies. GET

virtual_hierarchy
The virtual_hierarchy command creates and deletes virtual hierarchies, and also updates and
retrieves the properties of a virtual hierarchy.

The following table lists the properties of a virtual hierarchy, describes each of them, and specifies
whether each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET
method (as an output).

Table 37: Virtual hierarchy properties for input and output methods

Name Description HTTP methods

parent id of the parent virtual dimension. POST

addRelativeTimeMembers Add relative time members. Can be true or
false. POST

GET
PUT

calculatedMembers Array of id values of child calculated
members.

GET

comment Comment.
POST
GET
PUT

description Description. Localized text.
POST
GET
PUT

name Name. Localized text.
POST
GET
PUT

parentChild Parent-Child. Can be true or false.
POST
GET

screenTip Screen tip. Localized text.
POST
GET
PUT

sourceObjects Array of id values of virtual source objects.
GET

virtualLevels Array of id values of child virtual levels.
GET

76 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

virtual_level
The virtual_level command creates and deletes virtual levels, and also updates and retrieves the
properties of a virtual level.

The following table lists the properties of a virtual level, describes each of them, and specifies whether
each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET method (as
an output).

Table 38: Virtual level properties for input and output methods

Name Description HTTP methods

parent id of the parent virtual dimension or virtual
hierarchy.

POST

comment Comment.
POST
GET
PUT

description Description. Localized text.
POST
GET
PUT

name Name. Localized text.
POST
GET
PUT

screenTip Screen tip. Localized text.
POST
GET
PUT

sourceObjects Array of id values of virtual source objects.
GET

virtual_measure
The virtual_measure command creates and deletes virtual measures, and also updates and retrieves
the properties of a virtual measure.

The following table lists the properties of a virtual measure, describes each of them, and specifies
whether each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET
method (as an output).

Table 39: Virtual measure properties for input and output methods

Name Description HTTP methods

parent id of the parent virtual measure dimension
or virtual measure folder.

POST

comment Comment.
POST
GET
PUT

Cognos Dynamic Cubes command reference 77

Table 39: Virtual measure properties for input and output methods (continued)

Name Description HTTP methods

dataFormat Data format.
POST
GET
PUT

description Description. Localized text.
POST
GET
PUT

mergeOperator Merge operator.
POST
GET
PUT

name Name. Localized text.
POST
GET
PUT

precedence Precedence.
POST
GET
PUT

screenTip Screen tip. Localized text.
POST
GET
PUT

sourceObjects Array of id values of virtual source objects.
GET

visible Visible.
POST
GET
PUT

virtual_measure_dimension
The virtual_measure_dimension command creates and deletes virtual measure dimensions, and
also updates and retrieves the properties of a virtual measure dimension.

The following table lists the properties of a virtual measure dimension, describes each of them, and
specifies whether each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP
GET method (as an output).

Table 40: Virtual measure dimension properties for input and output methods

Name Description HTTP methods

parent id of the parent virtual cube. POST

calculatedMeasures Array of id values of child calculated
measures.

GET

78 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Table 40: Virtual measure dimension properties for input and output methods (continued)

Name Description HTTP methods

comment Comment.
POST
GET
PUT

defaultVirtualMeasure id of the default virtual measure or
calculated measure. The virtual measure or
calculated measure must exist.

GET
PUT

description Description. Localized text.
POST
GET
PUT

folders Array of id values of child virtual measure
folders. POST

GET
PUT

name Name. Localized text.
POST
GET
PUT

screenTip Screen tip. Localized text.
POST
GET
PUT

sourceObjects Array of id values of virtual source objects.
GET

virtualMeasures Array of id values of child virtual measures. GET

virtual_measure_folder
The virtual_measure_folder command creates and deletes virtual measure folders, and also
updates and retrieves the properties of a virtual measure folder.

The following table lists the properties of a virtual measure folder, describes each of them, and specifies
whether each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET
method (as an output).

Table 41: Virtual measure folder properties for input and output methods

Name Description HTTP methods

parent id of the parent virtual measure dimension
or virtual measure folder.

POST

comment Comment.
POST
GET
PUT

Cognos Dynamic Cubes command reference 79

Table 41: Virtual measure folder properties for input and output methods (continued)

Name Description HTTP methods

description Description. Localized text.
POST
GET
PUT

folders Array of id values of child virtual measure
folders. POST

GET
PUT

measures Array of id values of child virtual measures. GET

name Name. Localized text.
POST
GET
PUT

screenTip Screen tip. Localized text.
POST
GET
PUT

virtual_source
The virtual_source command creates and deletes virtual sources, and also updates and retrieves the
properties of a virtual source. Virtual sources are used to associate source objects to virtual objects.

The following tables lists the properties of a virtual source, describes each of them, and specifies whether
each property is applicable in an HTTP POST or PUT method (as an input), or in an HTTP GET method (as
an output). The properties differ depending on whether the virtual object is a virtual cube or a different
virtual object.

Table 42: Virtual source properties (for a virtual cube) for input and output methods

Name Description HTTP methods

parent id of the virtual cube that uses this virtual
source.

POST

name Name. This is an optional property. If it is
omitted, sourceName is used. Localized
text.

POST
GET
PUT

sourceName Name of the source cube. Required for
objects retrieved from the content store. POST

GET

sourceObject id of the source cube. Required for objects
retrieved from within the model. POST

GET

sourcePath Path of the source cube. Required for objects
retrieved from the content store. POST

GET

80 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Table 43: Virtual source properties (for a virtual object other than a virtual cube) for input and output
methods

Name Description HTTP methods

parent id of the virtual object that uses this virtual
source.

POST

name Name. This is an optional property. If it is
omitted, sourceName is used. Localized text. POST

GET
PUT

sourceName Name of the source object.
GET

sourceObject id of the source object.
POST
GET

sourceParent id of the parent object of sourceObject.
POST
GET

Localized text
Some model attributes, such as names, tooltips, and descriptions, support localized text. You can enter
the same data in multiple languages and the version that is displayed by the IBM Cognos Analytics server
is determined by the locale of the user.

Attributes that support localized text are expressed as an array of localized text elements as shown in the
following example.

"name": [
 {
 "text": "Sample",
 "locale": "en"
 },
 {
 "text": "Exemple",
 "locale": "fr"
 }],

Each text string is paired with a locale code. You can omit the array if you are adding data for a single
locale only.

"name":
 {
 "text": "Sample",
 "locale": "en"
 },

If you are using the default locale, you can add the text.

"name": "Sample",

When you retrieve the attributes of an object, localized data is always output as an array that contains
text and locale elements.

Cognos Dynamic Cubes command reference 81

Expressions
Expressions are used by some model commands to define a filter or a calculation.

An expressions is an array of one or more expression parts. Each expression part can be one of the
following objects:

• A column reference.
• A member unique name.
• A string, such as "=" or "||".
• An id of a model object, such as {"id":"133fd4f9bf904747ba9d3f89b50e4d4b"}.
• The XML representation of an expression object, as documented in the model schema reference in

the IBM Cognos Software Development Kit Framework Manager Developer Guide. An example is
"<expression><refobj>[Model].[Time].[levels].[Year].[Current Year]<\/refobj>
> 2000<\/expression>"

Column reference

A column reference consists of the following 4 name-value pairs.

columnName
Name of the column in the data source.

dataSourceRef
id of the data source.

objectRef
id of the referred object.

tableName
Name of the table in the data source.

For an example of this type of expression, see “Creating a relationship between the relational dimension
and the measure dimension” on page 21

Member unique name

A member unique name consists of the following 3 name-value pairs.

caption
A caption for the member unique name.

path
The path to the object in the Members folder in IBM Cognos Cube Designer.

member
The id of the model object referred to.

For an example of this type of expression, see “Create calculated members and measures” on page 38

82 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Notices

This information was developed for products and services offered worldwide.

This material may be available from IBM in other languages. However, you may be required to own a copy
of the product or product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.
This document may describe products, services, or features that are not included in the Program or
license entitlement that you have purchased.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Software Group
Attention: Licensing

© Copyright IBM Corp. 2013, 2018 83

3755 Riverside Dr.
Ottawa, ON
K1V 1B7
Canada

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Depending upon the configurations deployed, this Software Offering may use session and persistent
cookies that collect each user's

• name
• user name
• password

for purposes of

• session management
• authentication
• enhanced user usability
• single sign-on configuration
• usage tracking or functional purposes other than session management, authentication, enhanced user

usability and single sign-on configuration

These cookies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM's Privacy Policy at https://www.ibm.com/privacy/us/en/.

84 Notices

https://www.ibm.com/privacy/us/en/

Trademarks

IBM, the IBM logo and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at "
Copyright and trademark information " at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies:

• Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Notices 85

http://www.ibm.com/legal/copytrade.shtml

86 IBM Cognos Software Development Kit Version 11.0.0 : Dynamic Cubes Developer Guide

Index

A
aggregate command 48
aggregate_dimension command 48
aggregate_hierarchy command 48
aggregate_level command 49
aggregate_measure command 49
audience of document vii
authenticate command 43

C
calculated_member command 49
commands

aggregate 48
aggregate_dimension 48
aggregate_hierarchy 48
aggregate_level 49
aggregate_measure 49
authenticate 43
calculated_member 49
cube 50
cube_deploy 43
cube_register 44
cube_start 44
datasource 51
folder 53
level 53
measure 54
measure_dimension 56, 57
model 57
model_close 44
model_new 44
model_open 45
model_open_stream 45
model_save 45
model_save_as 46
model_save_stream 46
named_set 58
named_set_folder 59
namespace 60
parameter_map 61
physical_association 61
physical_join 62
physical_table 62
query_item 63
query_item_mapping 64
query_item_role 65
relational_dimension 65
relational_filter 66
relational_hierarchy 67
relational_parameter_map 69
relational_query_subject 69
relationship 70
relative_time_member 71
search 46
security_filter 72

commands (continued)
security_view 73
sql_object 74
virtual_cube 74
virtual_dimension 75
virtual_hierarchy 76
virtual_level 77
virtual_measure 77
virtual_measure_dimension 78
virtual_measure_folder 79
virtual_source 80

cube command 50
cube_deploy command 43
cube_register command 44
cube_start command 44

D
datasource command 51
description of product vii

F
folder command 53

L
level command 53

M
measure command 54
measure_dimension command 56, 57
model command 57
model_close command 44
model_new command 44
model_open command 45
model_open_stream command 45
model_save command 45
model_save_as command 46
model_save_stream command 46

N
named_set command 58
named_set_folder command 59
namespace command 60

P
parameter_map command 61
physical_association command 61
physical_join command 62
physical_table command 62
purpose of document vii

 87

Q
query_item command 63
query_item_mapping command 64
query_item_role command 65

R
relational_dimension command 65
relational_filter command 66
relational_hierarchy command 67
relational_parameter_map command 69
relational_query_subject command 69
relationship command 70
relative_time_member command 71

S
search command 46
security_filter command 72
security_view command 73
ssql_object command 74

V
virtual_cube command 74
virtual_dimension command 75
virtual_hierarchy command 76
virtual_level command 77
virtual_measure command 77
virtual_measure_dimension command 78
virtual_measure_folder command 79
virtual_source command 80

88

IBM®

	Contents
	Introduction
	Chapter 1. What's new?
	New features in version 10.2.2
	Support for in-memory aggregates
	Support for calculated members and measures
	Support for slices
	Support for relative time members
	Support for named sets
	Support for parameter maps
	Support for virtual measure folders
	Support for new expression types

	New features in version 10.2.1 interim fix 3
	Support for virtual cubes

	Chapter 2. Overview of the Cognos Dynamic Cubes API
	Cognos Dynamic Cubes HTTP request structure
	Cognos Dynamic Cubes HTTP response structure
	Cognos Dynamic Cubes sample programs
	Command overview

	Chapter 3. Sample Cognos Dynamic Cubes model creation
	Creating a model
	Creating a data source for the model
	Creating a relational dimension
	Creating a level for the relational dimension
	Creating a second level for the relational dimension
	Creating a relational hierarchy for the model
	Creating physical tables and joins
	Creating mappings for the level attributes
	Creating a cube for the model
	Creating a measure dimension for the cube
	Creating a measure
	Creating a relationship between the relational dimension and the measure dimension
	Saving the model to the local file system
	Publishing, registering, and starting the cube

	Chapter 4. Virtual cube modeling using the Cognos Dynamic Cubes API
	Creating a virtual cube
	Creating a virtual measure dimension
	Creating a virtual measure
	Creating a virtual dimension
	Creating a virtual hierarchy
	Creating a virtual level

	Chapter 5. Aggregate modeling using the Cognos Dynamic Cubes API
	Creating an aggregate
	Creating an aggregate measure
	Creating an aggregate dimension
	Creating an aggregate hierarchy
	Creating an aggregate level

	Chapter 6. Performing additional tasks using the Cognos Dynamic Cubes API
	Filter data using an aggregate slicer
	Create calculated members and measures
	Use relative time functionality
	Create named sets
	Create parameter maps

	Chapter 7. Cognos Dynamic Cubes command reference
	Control commands
	authenticate
	cube_deploy
	cube_register
	cube_start
	model_close
	model_new
	model_open
	model_open_stream
	model_save
	model_save_as
	model_save_stream
	search

	Model commands
	aggregate
	aggregate_dimension
	aggregate_hierarchy
	aggregate_level
	aggregate_measure
	calculated_member
	cube
	datasource
	folder
	level
	measure
	measure_dimension
	measure_folder
	model
	named_set
	named_set_folder
	namespace
	parameter_map
	physical_association
	physical_join
	physical_table
	query_item
	query_item_mapping
	query_item_role
	relational_dimension
	relational_filter
	relational_hierarchy
	relational_parameter_map
	relational_query_subject
	relationship
	relative_time_member
	security_filter
	security_view
	sql_object
	virtual_cube
	virtual_dimension
	virtual_hierarchy
	virtual_level
	virtual_measure
	virtual_measure_dimension
	virtual_measure_folder
	virtual_source

	Localized text
	Expressions

	Notices
	Index
	A
	C
	D
	F
	L
	M
	N
	P
	Q
	R
	S
	V

